000841285 001__ 841285 000841285 005__ 20240711085645.0 000841285 0247_ $$2doi$$a10.1016/j.memsci.2017.11.006 000841285 0247_ $$2ISSN$$a0376-7388 000841285 0247_ $$2ISSN$$a1873-3123 000841285 0247_ $$2Handle$$a2128/16277 000841285 0247_ $$2WOS$$aWOS:000419646500014 000841285 037__ $$aFZJ-2017-08377 000841285 082__ $$a570 000841285 1001_ $$0P:(DE-HGF)0$$aGarcia-Fayos, Julio$$b0 000841285 245__ $$aDual-phase membrane based on LaCo $_{0.2}$ Ni $_{0.4}$ Fe $_{0.4}$ O $_{3−x}$ -Ce $-{0.8}$ Gd $_{0.2}$ O $_{2−x}$ composition for oxygen permeation under CO $_{2}$ /SO $_{2}$ -rich gas environments 000841285 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018 000841285 3367_ $$2DRIVER$$aarticle 000841285 3367_ $$2DataCite$$aOutput Types/Journal article 000841285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513676107_27839 000841285 3367_ $$2BibTeX$$aARTICLE 000841285 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000841285 3367_ $$00$$2EndNote$$aJournal Article 000841285 520__ $$aA dual-phase material with high ambipolar conductivity composed by the perovskite LaCo0.2Ni0.4Fe0.4O3-δ (LCNF) as the electronic phase and the fluorite Ce0.8Gd0.2O2-δ (CGO20) as oxide-ion conductor is proposed for use as oxygen transport membrane. The chemical compatibility between both materials depends on the synthesis method, i.e. one-pot sol-gel synthesis leads to the formation of the fluorite and the perovskite phases, as well as a third NiO-based phase. The formation of this last phase can be avoided by previously stabilizing the phases separately. The composite material shows high electrical conductivity, i.e., 7.25 S cm−1 at 800 °C for LCNF-CGO20 with NiO impurity, and 2.6 S cm−1 at 800 °C for LCNF-CGO20. A maximum oxygen flux, J(O2), of 0.74 ml min−1 cm−2 is obtained at 1000 °C for a surface-activated membrane in Air/Ar gradient at ambient pressure. The membranes were tested under i) 30% CO2 in Ar, and ii) 250 ppm of SO2 in 30% CO2 in Ar, reproducing oxyfuel-like conditions. Oxygen flux decreases in these atmospheres, especially at temperatures below 900 °C, due to competitive adsorption of these gases with the O2. After CO2 and SO2 exposure, initial oxygen fluxes are recovered when switching back to Ar sweeping at temperatures above 900 °C. Nevertheless, at temperatures < 900 °C the original J(O2) before SO2 exposure is not fully recovered and postmortem FESEM images reveal the membrane surface degradation in SO2. 000841285 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0 000841285 536__ $$0G:(EU-Grant)608524$$aGREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)$$c608524$$fFP7-ENERGY-2013-1$$x1 000841285 588__ $$aDataset connected to CrossRef 000841285 7001_ $$0P:(DE-Juel1)161336$$aBalaguer, María$$b1 000841285 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b2$$ufzj 000841285 7001_ $$0P:(DE-HGF)0$$aSerra, José M.$$b3$$eCorresponding author 000841285 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2017.11.006$$gVol. 548, p. 117 - 124$$p117 - 124$$tJournal of membrane science$$v548$$x0376-7388$$y2018 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.pdf$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.gif?subformat=icon$$xicon$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/1-s2.0-S037673881731952X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.pdf$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.gif?subformat=icon$$xicon$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 8564_ $$uhttps://juser.fz-juelich.de/record/841285/files/Garcia-Fayos17%20-%20green_open_access.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-02-27. Available in OpenAccess from 2020-02-27. 000841285 909CO $$ooai:juser.fz-juelich.de:841285$$pdnbdelivery$$pec_fundedresources$$pVDB$$popen_access$$pdriver$$popenaire 000841285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b2$$kFZJ 000841285 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0 000841285 9141_ $$y2018 000841285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000841285 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000841285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000841285 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000841285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE SCI : 2015 000841285 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MEMBRANE SCI : 2015 000841285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000841285 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000841285 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000841285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000841285 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000841285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000841285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000841285 920__ $$lyes 000841285 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000841285 9801_ $$aFullTexts 000841285 980__ $$ajournal 000841285 980__ $$aVDB 000841285 980__ $$aUNRESTRICTED 000841285 980__ $$aI:(DE-Juel1)IEK-1-20101013 000841285 981__ $$aI:(DE-Juel1)IMD-2-20101013