000841290 001__ 841290
000841290 005__ 20240625095113.0
000841290 0247_ $$2doi$$a10.1016/j.str.2017.11.008
000841290 0247_ $$2ISSN$$a0969-2126
000841290 0247_ $$2ISSN$$a1878-4186
000841290 0247_ $$2Handle$$a2128/17605
000841290 0247_ $$2pmid$$apmid:29225080
000841290 0247_ $$2WOS$$aWOS:000419101700007
000841290 0247_ $$2altmetric$$aaltmetric:30126836
000841290 037__ $$aFZJ-2017-08381
000841290 082__ $$a570
000841290 1001_ $$0P:(DE-HGF)0$$aGenna, Vito$$b0
000841290 245__ $$aSecond-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes
000841290 260__ $$aLondon [u.a.]$$bElsevier Science$$c2018
000841290 3367_ $$2DRIVER$$aarticle
000841290 3367_ $$2DataCite$$aOutput Types/Journal article
000841290 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520840604_25962
000841290 3367_ $$2BibTeX$$aARTICLE
000841290 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841290 3367_ $$00$$2EndNote$$aJournal Article
000841290 520__ $$aSynthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing.
000841290 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000841290 588__ $$aDataset connected to CrossRef
000841290 7001_ $$0P:(DE-HGF)0$$aColombo, Matteo$$b1
000841290 7001_ $$0P:(DE-Juel1)167585$$aDe Vivo, Marco$$b2$$eCorresponding author
000841290 7001_ $$0P:(DE-HGF)0$$aMarcia, Marco$$b3$$eCorresponding author
000841290 773__ $$0PERI:(DE-600)2031189-8$$a10.1016/j.str.2017.11.008$$gp. S0969212617303611$$p40-50$$tStructure$$v26$$x0969-2126$$y2018
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.pdf$$yOpenAccess
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.gif?subformat=icon$$xicon$$yOpenAccess
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841290 8564_ $$uhttps://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841290 909CO $$ooai:juser.fz-juelich.de:841290$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000841290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167585$$aForschungszentrum Jülich$$b2$$kFZJ
000841290 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000841290 9141_ $$y2018
000841290 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841290 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000841290 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841290 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841290 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841290 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841290 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841290 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841290 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841290 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841290 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000841290 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841290 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841290 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841290 920__ $$lyes
000841290 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000841290 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000841290 980__ $$ajournal
000841290 980__ $$aVDB
000841290 980__ $$aUNRESTRICTED
000841290 980__ $$aI:(DE-Juel1)IAS-5-20120330
000841290 980__ $$aI:(DE-Juel1)INM-9-20140121
000841290 9801_ $$aFullTexts