001     841290
005     20240625095113.0
024 7 _ |a 10.1016/j.str.2017.11.008
|2 doi
024 7 _ |a 0969-2126
|2 ISSN
024 7 _ |a 1878-4186
|2 ISSN
024 7 _ |a 2128/17605
|2 Handle
024 7 _ |a pmid:29225080
|2 pmid
024 7 _ |a WOS:000419101700007
|2 WOS
024 7 _ |a altmetric:30126836
|2 altmetric
037 _ _ |a FZJ-2017-08381
082 _ _ |a 570
100 1 _ |a Genna, Vito
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes
260 _ _ |a London [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1520840604_25962
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Colombo, Matteo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a De Vivo, Marco
|0 P:(DE-Juel1)167585
|b 2
|e Corresponding author
700 1 _ |a Marcia, Marco
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.str.2017.11.008
|g p. S0969212617303611
|0 PERI:(DE-600)2031189-8
|p 40-50
|t Structure
|v 26
|y 2018
|x 0969-2126
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841290/files/1-s2.0-S0969212617303611-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841290
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167585
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21