001     841291
005     20240625095118.0
024 7 _ |a 10.1016/j.bmcl.2017.09.011
|2 doi
024 7 _ |a 0960-894X
|2 ISSN
024 7 _ |a 1464-3405
|2 ISSN
024 7 _ |a pmid:28919339
|2 pmid
024 7 _ |a WOS:000412863700018
|2 WOS
024 7 _ |a altmetric:26311269
|2 altmetric
037 _ _ |a FZJ-2017-08382
082 _ _ |a 540
100 1 _ |a Minniti, Elirosa
|0 0000-0002-8253-3382
|b 0
245 _ _ |a Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513232100_28643
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Byl, Jo Ann W.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Riccardi, Laura
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sissi, Claudia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rosini, Michela
|0 P:(DE-HGF)0
|b 4
700 1 _ |a De Vivo, Marco
|0 0000-0003-4022-5661
|b 5
700 1 _ |a Minarini, Anna
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Osheroff, Neil
|0 0000-0002-2550-4884
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.bmcl.2017.09.011
|g Vol. 27, no. 20, p. 4687 - 4693
|0 PERI:(DE-600)1501505-1
|n 20
|p 4687 - 4693
|t Bioorganic & medicinal chemistry letters
|v 27
|y 2017
|x 0960-894X
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841291/files/1-s2.0-S0960894X17308934-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841291
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 0000-0003-4022-5661
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOORG MED CHEM LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21