000841293 001__ 841293 000841293 005__ 20210129232009.0 000841293 0247_ $$2doi$$a10.1002/wcms.1320 000841293 0247_ $$2ISSN$$a1759-0876 000841293 0247_ $$2ISSN$$a1759-0884 000841293 0247_ $$2WOS$$aWOS:000419101000002 000841293 0247_ $$2altmetric$$aaltmetric:21039085 000841293 037__ $$aFZJ-2017-08384 000841293 082__ $$a004 000841293 1001_ $$0P:(DE-Juel1)167585$$aDe Vivo, Marco$$b0$$eCorresponding author$$ufzj 000841293 245__ $$aRecent advances in dynamic docking for drug discovery 000841293 260__ $$aMalden, MA$$bWiley-Blackwell$$c2017 000841293 3367_ $$2DRIVER$$aarticle 000841293 3367_ $$2DataCite$$aOutput Types/Journal article 000841293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513233015_28644 000841293 3367_ $$2BibTeX$$aARTICLE 000841293 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000841293 3367_ $$00$$2EndNote$$aJournal Article 000841293 520__ $$aMolecular docking allows the evaluation of ligand-target complementarity. This is the crucial first step in small-molecule drug discovery. Over the last decade, increasing computer power and more efficient molecular dynamics (MD) software have prompted the use of MD for molecular docking. The resulting dynamic docking offers major improvements by (1) taking full account of the structural flexibility of the drug-target system and (2) allowing the computation of the free energy and kinetics associated with drug binding. Here, we examine the recent advances in dynamic docking, while also considering the challenges and limitations that this powerful approach must overcome to impact fast-paced drug discovery. 000841293 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0 000841293 588__ $$aDataset connected to CrossRef 000841293 7001_ $$0P:(DE-HGF)0$$aCavalli, Andrea$$b1$$eCorresponding author 000841293 773__ $$0PERI:(DE-600)2599565-0$$a10.1002/wcms.1320$$gVol. 7, no. 6, p. e1320 -$$n6$$pe1320 -$$tWiley interdisciplinary reviews / Computational Molecular Science$$v7$$x1759-0876$$y2017 000841293 909CO $$ooai:juser.fz-juelich.de:841293$$pVDB 000841293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167585$$aForschungszentrum Jülich$$b0$$kFZJ 000841293 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000841293 9141_ $$y2017 000841293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWIRES COMPUT MOL SCI : 2015 000841293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000841293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000841293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000841293 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000841293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000841293 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000841293 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bWIRES COMPUT MOL SCI : 2015 000841293 920__ $$lyes 000841293 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000841293 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000841293 980__ $$ajournal 000841293 980__ $$aVDB 000841293 980__ $$aI:(DE-Juel1)IAS-5-20120330 000841293 980__ $$aI:(DE-Juel1)INM-9-20140121 000841293 980__ $$aUNRESTRICTED