001     841293
005     20210129232009.0
024 7 _ |a 10.1002/wcms.1320
|2 doi
024 7 _ |a 1759-0876
|2 ISSN
024 7 _ |a 1759-0884
|2 ISSN
024 7 _ |a WOS:000419101000002
|2 WOS
024 7 _ |a altmetric:21039085
|2 altmetric
037 _ _ |a FZJ-2017-08384
082 _ _ |a 004
100 1 _ |a De Vivo, Marco
|0 P:(DE-Juel1)167585
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Recent advances in dynamic docking for drug discovery
260 _ _ |a Malden, MA
|c 2017
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513233015_28644
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular docking allows the evaluation of ligand-target complementarity. This is the crucial first step in small-molecule drug discovery. Over the last decade, increasing computer power and more efficient molecular dynamics (MD) software have prompted the use of MD for molecular docking. The resulting dynamic docking offers major improvements by (1) taking full account of the structural flexibility of the drug-target system and (2) allowing the computation of the free energy and kinetics associated with drug binding. Here, we examine the recent advances in dynamic docking, while also considering the challenges and limitations that this powerful approach must overcome to impact fast-paced drug discovery.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cavalli, Andrea
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
773 _ _ |a 10.1002/wcms.1320
|g Vol. 7, no. 6, p. e1320 -
|0 PERI:(DE-600)2599565-0
|n 6
|p e1320 -
|t Wiley interdisciplinary reviews / Computational Molecular Science
|v 7
|y 2017
|x 1759-0876
909 C O |o oai:juser.fz-juelich.de:841293
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167585
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WIRES COMPUT MOL SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b WIRES COMPUT MOL SCI : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21