001 | 841293 | ||
005 | 20210129232009.0 | ||
024 | 7 | _ | |a 10.1002/wcms.1320 |2 doi |
024 | 7 | _ | |a 1759-0876 |2 ISSN |
024 | 7 | _ | |a 1759-0884 |2 ISSN |
024 | 7 | _ | |a WOS:000419101000002 |2 WOS |
024 | 7 | _ | |a altmetric:21039085 |2 altmetric |
037 | _ | _ | |a FZJ-2017-08384 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a De Vivo, Marco |0 P:(DE-Juel1)167585 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Recent advances in dynamic docking for drug discovery |
260 | _ | _ | |a Malden, MA |c 2017 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1513233015_28644 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Molecular docking allows the evaluation of ligand-target complementarity. This is the crucial first step in small-molecule drug discovery. Over the last decade, increasing computer power and more efficient molecular dynamics (MD) software have prompted the use of MD for molecular docking. The resulting dynamic docking offers major improvements by (1) taking full account of the structural flexibility of the drug-target system and (2) allowing the computation of the free energy and kinetics associated with drug binding. Here, we examine the recent advances in dynamic docking, while also considering the challenges and limitations that this powerful approach must overcome to impact fast-paced drug discovery. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Cavalli, Andrea |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
773 | _ | _ | |a 10.1002/wcms.1320 |g Vol. 7, no. 6, p. e1320 - |0 PERI:(DE-600)2599565-0 |n 6 |p e1320 - |t Wiley interdisciplinary reviews / Computational Molecular Science |v 7 |y 2017 |x 1759-0876 |
909 | C | O | |o oai:juser.fz-juelich.de:841293 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167585 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b WIRES COMPUT MOL SCI : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b WIRES COMPUT MOL SCI : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|