000841296 001__ 841296
000841296 005__ 20210129232009.0
000841296 0247_ $$2doi$$a10.1021/acs.est.7b02360
000841296 0247_ $$2ISSN$$a0013-936X
000841296 0247_ $$2ISSN$$a1520-5851
000841296 0247_ $$2pmid$$apmid:29039187
000841296 0247_ $$2WOS$$aWOS:000416496700007
000841296 0247_ $$2altmetric$$aaltmetric:27566980
000841296 037__ $$aFZJ-2017-08386
000841296 041__ $$aEnglish
000841296 082__ $$a050
000841296 1001_ $$00000-0002-5456-8828$$aLiu, Shurong$$b0$$eCorresponding author
000841296 245__ $$aAbiotic Conversion of Extracellular NH 2 OH Contributes to N 2 O Emission during Ammonia Oxidation
000841296 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000841296 3367_ $$2DRIVER$$aarticle
000841296 3367_ $$2DataCite$$aOutput Types/Journal article
000841296 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513253275_28645
000841296 3367_ $$2BibTeX$$aARTICLE
000841296 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841296 3367_ $$00$$2EndNote$$aJournal Article
000841296 520__ $$aAbiotic processes involving the reactive ammonia-oxidation intermediates nitric oxide (NO) or hydroxylamine (NH2OH) for N2O production have been indicated recently. The latter process would require the availability of substantial amounts of free NH2OH for chemical reactions during ammonia (NH3) oxidation, but little is known about extracellular NH2OH formation by the different clades of ammonia-oxidizing microbes. Here we determined extracellular NH2OH concentrations in culture media of several ammonia-oxidizing bacteria (AOB) and archaea (AOA), as well as one complete ammonia oxidizer (comammox) enrichment (Ca. Nitrospira inopinata) during incubation under standard cultivation conditions. NH2OH was measurable in the incubation media of Nitrosomonas europaea, Nitrosospira multiformis, Nitrososphaera gargensis, and Ca. Nitrosotenuis uzonensis, but not in media of the other tested AOB and AOA. NH2OH was also formed by the comammox enrichment during NH3 oxidation. This enrichment exhibited the largest NH2OH:final product ratio (1.92%), followed by N. multiformis (0.56%) and N. gargensis (0.46%). The maximum proportions of NH4+ converted to N2O via extracellular NH2OH during incubation, estimated on the basis of NH2OH abiotic conversion rates, were 0.12%, 0.08%, and 0.14% for AOB, AOA, and Ca. Nitrospira inopinata, respectively, and were consistent with published NH4+:N2O conversion ratios for AOB and AOA.
000841296 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000841296 588__ $$aDataset connected to CrossRef
000841296 7001_ $$0P:(DE-HGF)0$$aHan, Ping$$b1
000841296 7001_ $$0P:(DE-HGF)0$$aHink, Linda$$b2
000841296 7001_ $$0P:(DE-HGF)0$$aProsser, James I.$$b3
000841296 7001_ $$0P:(DE-HGF)0$$aWagner, Michael$$b4
000841296 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b5
000841296 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.7b02360$$gVol. 51, no. 22, p. 13122 - 13132$$n22$$p13122 - 13132$$tEnvironmental science & technology$$v51$$x1520-5851$$y2017
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.pdf$$yRestricted
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.gif?subformat=icon$$xicon$$yRestricted
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841296 8564_ $$uhttps://juser.fz-juelich.de/record/841296/files/acs.est.7b02360-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841296 909CO $$ooai:juser.fz-juelich.de:841296$$pVDB:Earth_Environment$$pVDB
000841296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b5$$kFZJ
000841296 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000841296 9141_ $$y2017
000841296 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841296 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2015
000841296 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841296 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841296 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841296 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841296 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841296 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841296 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841296 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841296 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841296 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000841296 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000841296 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000841296 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2015
000841296 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000841296 980__ $$ajournal
000841296 980__ $$aVDB
000841296 980__ $$aI:(DE-Juel1)IBG-3-20101118
000841296 980__ $$aUNRESTRICTED