001     841351
005     20220930130138.0
024 7 _ |a 10.3390/molecules22122231
|2 doi
024 7 _ |a 2128/16572
|2 Handle
024 7 _ |a WOS:000419242400196
|2 WOS
024 7 _ |a altmetric:30593202
|2 altmetric
024 7 _ |a pmid:29244780
|2 pmid
037 _ _ |a FZJ-2017-08436
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Zarrad, Fadi
|0 P:(DE-Juel1)166309
|b 0
|u fzj
245 _ _ |a A Practical Method for the Preparation of 18F-Labeled Aromatic Amino Acids from Nucleophilic [18F]Fluoride and Stannyl Precursors for Electrophilic Radiohalogenation
260 _ _ |a Basel
|c 2017
|b MDPI75390
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516024637_30491
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a recent contribution of Scott et al., the substrate scope of Cu-mediated nucleophilic radiofluorination with [18F]KF for the preparation of 18F-labeled arenes was extended to aryl- and vinylstannanes. Based on these findings, the potential of this reaction for the production of clinically relevant positron emission tomography (PET) tracers was investigated. To this end, Cu-mediated radiofluorodestannylation using trimethyl(phenyl)tin as a model substrate was re-evaluated with respect to different reaction parameters. The resulting labeling protocol was applied for 18F-fluorination of different electron-rich, -neutral and -poor arylstannyl substrates in RCCs of 16–88%. Furthermore, this method was utilized for the synthesis of 18F-labeled aromatic amino acids from additionally N-Boc protected commercially available stannyl precursors routinely applied for electrophilic radiohalogenation. Finally, an automated synthesis of 6-[18F]fluoro-l-m-tyrosine (6-[18F]FMT), 2-[18F]fluoro-l-tyrosine (2-[18F]F-Tyr), 6-[18F]fluoro-l-3,4-dihydroxyphenylalanine (6-[18F]FDOPA) and 3-O-methyl-6-[18F]FDOPA ([18F]OMFD) was established furnishing these PET probes in isolated radiochemical yields (RCYs) of 32–54% on a preparative scale. Remarkably, the automated radiosynthesis of 6-[18F]FDOPA afforded an exceptionally high RCY of 54 ± 5% (n = 5).
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zlatopolskiy, Boris
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Krapf, Philipp
|0 P:(DE-Juel1)169356
|b 2
|u fzj
700 1 _ |a Zischler, Johannes
|0 P:(DE-Juel1)166483
|b 3
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.3390/molecules22122231
|g Vol. 22, no. 12, p. 2231 -
|0 PERI:(DE-600)2008644-1
|n 12
|p 2231 -
|t Molecules
|v 22
|y 2017
|x 1420-3049
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841351/files/molecules-22-02231.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841351
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166309
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169356
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166419
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOLECULES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21