000841394 001__ 841394
000841394 005__ 20210129232018.0
000841394 0247_ $$2doi$$a10.1145/3144763.3144765
000841394 0247_ $$2Handle$$a2128/26302
000841394 037__ $$aFZJ-2017-08469
000841394 041__ $$aEnglish
000841394 1001_ $$0P:(DE-Juel1)162390$$aGötz, Markus$$b0$$eCorresponding author$$ufzj
000841394 1112_ $$aWorkshop on Software Engineering for High Performance Computing in Computational and Data-enabled Science & Engineering$$cDenver$$d2017-11-12 - 2017-11-17$$gSE-CoDeSe 17$$wUSA
000841394 245__ $$aSupporting Software Engineering Practices in the Development of Data-Intensive HPC Applications with the JuML Framework
000841394 260__ $$bACM Press$$c2017
000841394 29510 $$aProceedings of the 1st International Workshop on Software Engineering for High Performance Computing in Computational and Data-enabled Science & Engineering
000841394 300__ $$a1-8
000841394 3367_ $$2ORCID$$aCONFERENCE_PAPER
000841394 3367_ $$033$$2EndNote$$aConference Paper
000841394 3367_ $$2BibTeX$$aINPROCEEDINGS
000841394 3367_ $$2DRIVER$$aconferenceObject
000841394 3367_ $$2DataCite$$aOutput Types/Conference Paper
000841394 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1528088884_1612
000841394 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000841394 520__ $$aThe development of high performance computing applications is considerably different from traditional software development. This distinction is due to the complex hardware systems, inherent parallelism, different software lifecycle and workflow, as well as (especially for scientific computing applications) partially unknown requirements at design time. This makes the use of software engineering practices challenging, so only a small subset of them are actually applied. In this paper, we discuss the potential for applying software engineering techniques to an emerging field in high performance computing, namely large-scale data analysis and machine learning. We argue for the employment of software engineering techniques in the development of such applications from the start, and the design of generic, reusable components. Using the example of the Juelich Machine Learning Library (JuML), we demonstrate how such a framework can not only simplify the design of new parallel algorithms, but also increase the productivity of the actual data analysis workflow. We place particular focus on the abstraction from heterogeneous hardware, the architectural design as well as aspects of parallel and distributed unit testing.
000841394 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000841394 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000841394 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x2
000841394 588__ $$aDataset connected to CrossRef Conference
000841394 7001_ $$0P:(DE-HGF)0$$aBook, Matthias$$b1
000841394 7001_ $$0P:(DE-Juel1)164357$$aBodenstein, Christian$$b2$$ufzj
000841394 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b3$$ufzj
000841394 773__ $$a10.1145/3144763.3144765
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.pdf$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.gif?subformat=icon$$xicon$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/paper_.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841394 8564_ $$uhttps://juser.fz-juelich.de/record/841394/files/Goetz-et-al-supporting-software.pdf$$yOpenAccess
000841394 909CO $$ooai:juser.fz-juelich.de:841394$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000841394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162390$$aForschungszentrum Jülich$$b0$$kFZJ
000841394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164357$$aForschungszentrum Jülich$$b2$$kFZJ
000841394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b3$$kFZJ
000841394 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000841394 9141_ $$y2017
000841394 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841394 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000841394 980__ $$acontrib
000841394 980__ $$aVDB
000841394 980__ $$aUNRESTRICTED
000841394 980__ $$acontb
000841394 980__ $$aI:(DE-Juel1)JSC-20090406
000841394 9801_ $$aFullTexts