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ABSTRACT

The development of high performance computing applications is
considerably different from traditional software development. This
distinction is due to the complex hardware systems, inherent par-
allelism, different software lifecycle and workflow, as well as (es-
pecially for scientific computing applications) partially unknown
requirements at design time. This makes the use of software engi-
neering practices challenging, so only a small subset of them are
actually applied. In this paper, we discuss the potential for applying
software engineering techniques to an emerging field in high per-
formance computing, namely large-scale data analysis and machine
learning. We argue for the employment of software engineering
techniques in the development of such applications from the start,
and the design of generic, reusable components. Using the example
of the Juelich Machine Learning Library (JuML), we demonstrate
how such a framework can not only simplify the design of new
parallel algorithms, but also increase the productivity of the actual
data analysis workflow. We place particular focus on the abstraction
from heterogeneous hardware, the architectural design as well as
aspects of parallel and distributed unit testing.
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1 INTRODUCTION

High performance computing (HPC) is concerned with the coupling
of computational resources to enable the solution of large-scale
problems in science and engineering. Specific application fields
include e.g. simulating the climate in order to forecast the weather,
optimizing the flow dynamics of car chassis, or protein folding.
While the user domains heavily vary in their methods, in the end
they all require the use of some form of software, often developed
by the end-users of the application themselves. The development
processes and applied engineering approaches for those systems
are very different from traditional commercial software. A num-
ber of investigations have been performed regarding the reasons.
One of the most accurate summaries is given by Basili et al. [5]
that is additionally supported by research of Segal and Morris [38]
and Schmidberger and Briigge [36].

Their findings can be condensed as follows. First and foremost,
the main users of HPC systems are domain scientists. These are
experts in physics, chemistry, biology and so forth. This means
they often do not have a background in computer science or soft-
ware engineering, and therefore lack knowledge about engineering
approaches and their usefulness. More importantly, their main ob-
jective lies in the domain science and not in engineering code. As a
result, technical process optimization and development methods
take a back seat compared to the actual scientific question. This also
makes requirements analysis challenging, as most of the features
are often unknown at design time, and are changing heavily in the
process [38]. This has led to an implicit adoption of an agile devel-
opment process, albeit without following any formal methodology.

Second, the technological challenges in HPC are enormous. The
systems themselves are highly parallel, and designing algorithms
for them is a time-consuming activity. Most of the legacy code is
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therefore written in low-level programming languages like Fortran
and C, which continue to be used to this day, as they allow various
optimizations and access to accelerator hardware like coprocessors.
Changing this infrastructure seems unlikely as it would require
rewriting highly complex software with decades worth of fine-
tuning. In lieu of that, new technologies can only be slowly adapted
and integrated. The latest developments include for example the
broader use of C++ and its object-oriented programming model as
well as the use of scripting languages (mainly Python) as interface
wrappers to simply application coding [36].

Finally, the ranking of engineering goals in HPC differs from the
engineering of information systems. Carver et al. [9] point out that
first and foremost the correctness of the code matters, followed
by performance/scalability, portability and maintainability, in that
order. However, the verification and validation of code in HPC
is challenging due to the complexity of the application domains
and especially with respect to the cost of a potentially validating
experiment [5]. Structured software testing has therefore become
frequently used in HPC recently, but is still only used to a limited
degree. Testing distributed and parallel systems is not well stud-
ied, much less supported by tools. Performance gains are usually
invested in increasing the resolution and number of parameters
of a simulation, rather than shortening the time to obtain a solu-
tion. Portability aspects have to be considered due to the quickly
changing nature of the execution hardware. The lifetime of an HPC
system is often in the three to five year range, while low-level li-
braries are around for decades. The low importance assigned to
maintainability is often reflected in poor code quality, little to no
documentation, heavy code duplication and other practices often
frowned upon in other application domains. The low maintain-
ability can also be attributed to the workflow of HPC application
development. While major base libraries are well maintained, a lot
of the application code is developed in a trial-and-error fashion to
test models, and is more intended to be a throw-away prototype.
Working code, though, is often not refactored or redesigned from
scratch, but directly taken as a foundation for further development.

Currently, the HPC community sees the rise of a new sub-field—
data analysis and machine learning. While these techniques have
always played a role in the experimentation since beginning of
HPC, large-scale data intensive experiments, such as the TOAR
climate research database [37], the earth science data repository
PANGAEA [16] or the planned Square Kilometer Array [15] have
recently led to a steep increase in interest and requirements. Typical
analysis goals are the unsupervised identification of patterns in
data, the classification of observations into groups or the detection
of anomalous readings. While these goals do not differ from the
small-scale data analysis world, the sheer amount of data and its
bandwidth require the use of HPC resources. Current engineering
research focuses on the parallelization of algorithms, their scala-
bility with respect to the number of data items, and the precision
of predictions. Moreover, there is an increasing desire to couple
simulations with in-situ data analytics [43], underlining the need
for an integrated framework.

Since the broad development of HPC-driven data analysis and
machine learning applications is still a relatively young field with
little existing code, there is an opportunity to establish the use
of suitable software engineering practices from early on. In this

paper, we discuss the typical data analysis workflow on HPC sys-
tems with respect to reappearing patterns, reusable components
such as standard analysis algorithms, as well as aspects of appli-
cation development. As a tool to support the adoption of software
engineering practices such as modular design and structured test-
ing, we introduce the Juelich Machine Learning Library (JuML),
an HPC data analysis framework that implements said techniques.
Its five major design requirements are: (1) Provision of scalable
machine learning algorithms, (2) transparent execution on different
hardware backends, (3) well-documented, tested and intuitive API,
(4) support for the scripting workflow of domain scientists and (5) a
pluggable architecture design to enable the framework extension.
JuML has proven to be successful in a number of use cases, one of
the land cover type classification, presented in Section 5.

The remainder of this paper is structured as follows. Section 2
gives a brief overview of modern, heterogeneous HPC systems and
technologies. Related work on software engineering efforts in the
HPC field as well as distributed, scalable data analysis frameworks
is discussed in Sect. 3. In Sect. 4 the typical data analysis workflow
on HPC systems is discussed and pertinent design solutions of
JuML are presented, including how applications can be tested. After
the land cover type detection use case study in Sect. 5, Sect. 6
summarizes our contributions and points out opportunities for
future work.

2 BACKGROUND—ANATOMY OF HIGH
PERFORMANCE COMPUTING SYSTEMS

HPC systems are very diverse in their hardware components and
properties, and each can be considered more or less unique. In addi-
tion to that, particular product brands tend to disappear once market
adoption is reached, due to vendors introducing new marketable
platforms, leading to numerous code changes for developers relying
on the a particular system design. Nowadays systems are mostly
clusters with basic compute nodes equipped with a multi-core pro-
cessor and shared main memory. Additionally, larger systems, tend
to be designed in a modular or heterogeneous fashion, meaning that
the system includes specialized coprocessors, such as for example
general-purpose graphics cards (GPGPUs) [31], field-programmable
arrays (FPGAs) [33] or Many Integrated Cores (MICs) [22] boards.
The range of choices is large and every single candidate requires a
separate programming model and often special tailoring of the code
to efficiently execute on said hardware. This highly increases devel-
opment effort and cost, while at the same time reducing portability.
There are efforts to abstract from the peculiarities using high-level
APIs, e.g OpenCL [42], but they need strong compiler support or still
significant code adjustments. High performance programs usually
run in a single-program, multiple data items (SPMD) fashion. That
means each of the nodes executes the exact same binary and only
works on a different part of the simulated space or data partition.
The de facto standard inter-process communication framework for
this on HPC systems is the Message Passing Interface (MPI) [20],
which not only automatizes the distributed and parallel spawning
of the processes, but also provides the message exchange primitives.
These primitives usually allow to send and receive arrays of single
data types synchronously or asynchronously in a point-to-point or
collective manner.
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3 RELATED WORK

Over the past years, there have been increased efforts to address the
low prominence of software engineering techniques in HPC that
we summarized in Sect. 1. One of the major projects in this area
has been DARPA’s HPCS lighthouse effort [25], starting already in
2002, to not only improve the machines” hardware capabilities, but
also the software landscape to increase productivity. In its wake, a
number of other efforts have been established to foster software
engineering in HPC. Among these are works on the usage of soft-
ware engineering tools and methods in HPC [29], the usage of agile
development processes [40] or studies of performance in compar-
ison to maintainability and scalability [34]. Moreover, there are
dedicated software engineering teams in simulation projects such
as the HPC-SE team at the Barcelona Supercomputing Center or
the SimLabs in Juelich [3]. The awareness for software engineering
methods is slowly arriving in the application domains as well.

In the data analysis area, we can currently observe a potpourri
of tools, frameworks and libraries claiming to enable scalable and
large-scale experimentation. At the lowest level, there are Theano [8]
TensorFlow [1] and Arrayfire [26]. These are efficient matrix and
tensor computation libraries, capable of exploiting CUDA and
OpenCL capable devices respectively, and widely used in the area
of data analysis and machine learning. On top of them, there are
higher-level libraries dedicated to neural networks and machine
learning. Among them are for example Caffe [23], (py)Torch and
MXNet [11] and even support multi GPGPU learning.

However based on their design and the support for traditional
unsupervised approaches, MLPack [14] and Intel DAAL [22] are
the most similar to JuML. Both of them offer efficient algorithm
implementations and the later also a computation distribution strat-
egy. For an application developer, the object-oriented design of
both libraries assists the quick development of analysis tools that
exploit parallelism in C++. Despite their specific strong suits, both
are subsets compared to what JuML is aiming to achieve.

MLPack puts a strong emphasis on code correctness, and there-
fore unit testing, bug tracking and performance analysis. Its unit
test suite is comprehensive and covers most of the code, but is only
executed single-threaded. The performance tests measure algorithm
analysis qualities, such as prediction accuracy, as well as implemen-
tation performance like execution time and memory consumption
as part of the build process. Comparability of these measurements
is not given as they measure raw performance instead of relative
performance increases.

DAAL, instead, also allows the development of data analysis
applications in Java and Python, using the included bindings. It
has a built-in notion of algorithm parallelization across multiple
distributed nodes and supports the use of Intel’s MIC Xeon Phi.
However, the actual data distribution implementation included in
DAAL works only in conjunction with Apache Spark or Hadoop
as the parallel processing platform. For technical reasons, such as
scheduler and file system incompatibility, MPI and Spark/Hadoop
will often not be used on the same cluster systems due to difficult
integration [18]. The data distribution code with MPI as communi-
cation framework needs to be provided by the application user [2],
which is often the most error-prone and time-consuming part of
HPC application development.

SUPERCOMPUTING’17, November 2017, Denver, Colorado, USA

4 THE JUELICH MACHINE LEARNING
LIBRARY FOR DATA ANALYSIS IN HIGH
PERFORMANCE COMPUTING

The general data analysis workflow on HPC systems does not differ
in its essentials from small-scale analysis. There are a number of
standard processes explained in the literature and established in
the industry, such as KDD or CRISP-DM [4]. Despite minor differ-
ences in these, the main steps of the analysis process always are:
1. data selection, 2. characteristics exploration and identification,
3. preprocessing, 4. model construction according to the analysis
objective, 5. evaluation, 6. postprocessing, and 7. deployment and
preservation of analysis results. Even though described in a very
linear fashion, the actual process is not rigid, but rather iterative in
nature, with the most cycles between step 3 and 6.

Common analysis goals are the classification of data items into
categories, detection of recurring patterns, prediction of future
values or filtering of outliers. This analytical framework is well
understood from small-scale data analysis and can simply be used
as a set of standard algorithms in the HPC community. What differs
is the data volume and number of observations to be analyzed.
These can easily exceed a number of terabytes up to some petabytes
for a single problem. The framework should take care of the data
distribution as well as algorithm parallelization while supporting
each of the data analysis workflow steps described above.

The open-source Juelich Machine Learning Library (JuML) [21]
strives to implement such a framework. It is written in C++ and uses
ArrayFire as its computation engine to support OpenCL-capable
coprocessors as well as CUDA-capable GPGPUs. JuML aims at
supporting data analysis application developers and parallel algo-
rithm designers with each of the above steps of the workflow. For
this, JuML is designed in a modular fashion with generic, reusable
components designed for application and framework developers.
This reduces code duplication and introduces single entities for
optimization. Moreover, it features a high-level API that allows
the transparent definition and assignment of parallel processing re-
sources for individual computation steps. Each of the components is
designed with the goal of speeding up data analysis in a distributed
HPC system with MPI as the distributed, parallel processing and
message exchange platform. Figure 1 depicts an overview of JuML’s
internal architecture. Generally, it is divided into two virtual parts.
On the one hand, there are the classes and APIs meant to be used
by the application developers, which are situated at the top. These
are kept abstract and high-level in order to hide parallelization
details from the analysts, while on the other hand, the low-level
routines are aimed at simplifying distributed and parallel analy-
sis algorithm development. In the following subsections, we will
highlight some of the most important engineering issues in build-
ing HPC data analysis applications, and corresponding solution
strategies implemented or supported in JuML.

4.1 Data Access and Distribution

The central unit of each analysis step is the dataset that is being in-
vestigated. For many use cases, the amount of data is so large that it
needs to be split up and distributed across a number of independent
nodes. While the access pattern is often arbitrary for simulations,
e.g., particles in a certain spatial cell, it is regular for data analysis
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Figure 1: UML diagram of JuML’s architecture.

uses cases. Each of the nodes receives an equally sized chunk of
the data in order to provide the most optimal load balancing and
thus peak parallel performance. Sometimes a halo is required, i.e.
an overlap in the data chunks, that allows the merging of partial
results of parallel computations. Essentially, this means there are
only two major data access strategies, or four, if one includes ad-
ditional weights, that account for performance differences of the
allocated processors and coprocessors.

1 juml::Dataset data("/home/analysis_data.h5", "samples");

Listing 1: Distributed dataset access example.

Based on this, the distribution strategies can be encapsulated
into reusable entities. In JuML this is realized in the Dataset class,
which abstracts the highly complex parallel I/O implementation
details from the user. Instead, the user only needs to know the path
to the desired data file and the name of the request dataset in the file,
and pass both to a Dataset constructor. Listing 1 shows an example.
JuML’s Dataset object is implemented in a lazy loading fashion,
which means data is only loaded if really required. This has two
advantages: on the one hand, it increases parallel I/O performance
by not loading superfluous data, and on the other hand, it hides the
actual chosen data distribution strategy. A concrete data analysis
implementation analyzing a dataset knows best which distribution
strategy it requires. Therefore, it will chose at analysis time one of
the four distribution strategies explained above and actually request
the Dataset object to fetch data from the storage system.

This approach and the interface design is similar to Resilient Dis-
tributed Datasets (RDDs) in Apache Spark [28] and highly simplifies
development efforts for application developers. For JuML frame-
work developers, it centralizes I/O code and thereby enables focused
performance tuning, having to enhance only one entity, and the
easy extension of other distribution strategies, if required. JuML cur-
rently allows users to load and store data in the parallel data format
HDFS5 [17] and the equi-chunking strategy. Currently, netCDF sup-
port, another parallel data format, and the halo-chunking strategy

are in development. Redistribution of the data stored in a Dataset
is not supported by design as it introduces a significant perfor-
mance bottleneck. In summary, JuML’s Dataset implementation
specifically supports HPC data analysis application developers in
steps 1 and 7 of the data analysis process cycle.

4.2 API Design

JuML’s API is generally designed in a way to resemble the APIs
of well-known single-threaded, single-node data analysis libraries,
e.g., scikit-learn [32] or SHOGUN [41]. This should simplify port-
ing small-scale data analysis code to HPC systems, if required for
the application use cases and makes it easier for new users feel to
familiar with the JuML framework. The individual components are
modularized into individual entities that each model one particular
data analysis method or algorithm. Each of these entities accepts
Dataset objects as input and equally generates a Dataset as out-
put. At the same time, all of the analysis algorithms implement
a common interface. Ultimately, this allows data analysis applica-
tion developers the easy and transparent exchange of the chosen
analysis algorithm and therefore minimizes required manual code
changes.

In contrast to the APIs of scikit-learn or SHOGUN, though, JuML
always requires two additional experimentation parameters beside
the actual analysis parameters. These are a handle for the local
computation backend, e.g., CPU, GPU etc., and a handle for the
cluster nodes on which to run the data analysis algorithm. The lo-
cal computation backend choice is simply forwarded to ArrayFire,
which in turn deploys the computation kernels correctly. For the
global parallelization strategy, that is the selection of nodes, JuML
accepts a MPI communicator, a data structure of the MPI framework
that encapsulates a set of computation nodes. These two handles
are sufficient for any JuML data analysis algorithm to completely
parallelize the data analysis. For an application developer, this dras-
tically reduces the amount of code that needs to be written and the
parallelization knowledge required. Where before, he would have
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to implement the communication code manually (which accounts
for a major share of lines of code in HPC applications), the same
is now expressed by two singular values. Listing 2 shows an API
usage example of an arbitrarily selected data analysis algorithm
that computes locally on the GPU and uses the entire available
node allocation of the cluster system.

#include <juml.h>
#include <mpi.h>

int main(void) {
juml::GaussianNaiveBayes gnb(
6 juml::Backend::GPU, // local gpu backend
7 MPI_COMM_WORLD // select global node allocation
8 )
9 return 0;

10 }
Listing 2: C++ API usage example—creation of a GNB classi-
fier computing on GPUs and all available nodes.

1
2
3
4
5

In addition to that, JuML also supports the usage of Python as a
scripting language. This shall ease the transition of data analysts
coming from the small-scale data analysis world, where the script-
ing language is broadly used, to the large-scale data analysis world.
For this, JuML employs the technique of automatic code genera-
tion. Specifically, the SWIG [6] interface generator is utilized to
accomplish this task. It automatically searches JuML’s C++ sources,
identifies classes and generates matching Python classes.

In principle, it is also possible to generate bindings for other
languages with SWIG, say R or Julia, but this should be treated
with care. Each of these languages have their own approach to
working in data analysis and are strongly focused on particular data
containers. A wrapper needs to carefully support these differences
in the approaches to maintain the possibility of a smooth adaption of
JuML. As of the time of this writing, Python is the most widespread
data analysis scripting language in the HPC environment and is
therefore so far the only supported other programming language
despite C/C++. In summary, JuML’s API design shall mainly assist
HPC data analysis application developers in steps 4 and 5 of the
data analysis process. Listing 3 shows an example on how to use
the generated Python bindings using the example of a Gaussian
Naive Bayes classifier introduced above.

1 import juml

2 from mpi4py import MPI

3

4 gnb = juml.GaussianNaiveBayes(

5 juml .Backend.CPU, # local cpu backend
6 MPI.COMM_SELF # global node allocation
7))

Listing 3: Python API usage example—instantiation of a
GNB classifier computing on CPUs and a single node only.

4.3 Reusable Components

JuML also offers a number of reusable components that are not
meant for application developers but rather algorithm developers.
Among these are for example class label normalizers, distance func-
tions, probability density accumulators and more. As an example,
we will discuss the distributed parallel sorting algorithm that is one
of the major components required for parallelizing a number of
data analysis algorithms.

Distributed parallel sorting is a key to domain decomposition
in data analysis algorithm implementations. In simulation codes
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one can often find a natural object or systems that allows to split
up the domain into independent sub-problems. These in turn can
then be assigned to individual processes and computed in parallel.
This heavily reduces the amount of communication and limits syn-
chronization to the sub-problem boundaries. The major benefit is a
highly scalable and more optimal parallel computation. A typical
example is the subdivision of a simulated fluid dynamics space into
sub-volumes. For data analysis problems, however, this can not
be as easily done, since there is no inherent divisible system in
the domain except the spanning boundary of each of the analysis
features and their minimum and maximum. If this space is subject
to some ordering, for instance a partial one, it is possible to per-
form a data-driven domain decomposition. In order to impose such
an ordering, one needs to sort the data. Afterwards, the resulting
independent data chunks can be assigned to processors as in the
simulation problems.

Among the parallel data analysis algorithms that use this strat-
egy are for example distributed decision trees [7] or the parallel
HPDBSCAN [19] algorithm. JuML provides an optimized version
of such a global sorting algorithm—that is, the processor with the
lowest rank has the smallest element and the one with the high-
est rank has the largest element, and every element in-between is
partially ordered—in the form of the balanced parallel sorting by
regular sampling [39]. This algorithm is highly scalable to large
amounts of data and auto-balances the number of data items each
processor receives.

Using this reusable framework, the amount of code and devel-
opment time required to implement new data analysis algorithms
in the JuML framework is greatly reduced and the probability of
implementing a highly scalable solution increased. Since applica-
tion use case developers also often become framework developers
on HPC systems, as explained in Sect. 1, this is indirectly also a
benefit for the application development use case, where JuML does
not yet provide an implementation of the required data analysis
method. Depending on the application development stage, JuML’s
reusable components support the development of HPC data analysis
applications in steps 2 to 6 of the data analysis process.

4.4 Testing

Testing, specifically unit and system testing, is a difficult topic in
the high performance community. There are a number of testing
goals beside simple correctness, which are not widely considered
in other software development areas, such as numerical stability of
the computations, a multitude of different hardware environment
configurations—CPU, GPGPUs, FPGAs, etc.—as well as a high de-
gree of parallelization and concurrency. There are works by various
authors on how to effectively tackle these generally [36] and in
details through the application of effective testing methods [29],
mocking approaches [12] or concrete case studies [30]. The main
issue is the diffusion of the findings into the practical application
within the HPC projects, where often one can find little to no use
at all.

Most HPC projects that actually do test their code make use
of standard unit testing frameworks such as GTest [44] or Boost
Test. However, the way that these tests are usually designed and
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executed is flawed. First, the tests are either not provided for the par-
allel and distributed sections of the code. Second, these either test
only low-level functionality, say a singular computational kernel,
or they are not executed in parallel. This means that tests actually
often do not cover the most complex and critical aspects of the
code. The two main reasons for this are the lack of parallel and
distributed testing frameworks and the unwillingness of application
developers to commit expensive and limited compute resources for
“use case irrelevant” computation. Third, if tests are provided, they
are usually replicated and slightly adjusted for each of the compu-
tation backends, e.g., CPU, GPU, etc. Considering good software
engineering practices, this violates the don’t-repeat-yourself (DRY)
principle [45].

JuML tries to overcome these problems by providing the pos-
sibility of performing parallel and distributed unit tests executed
on each computational backend. These are not only intended for
the JuML framework developers, but are also accessible for applica-
tion developers. The test execution on the different computation
backends is realized by extending the test case definition macros of
JuML’s baseline testing framework GTest. Instead of defining test
cases using the TEST macro, a JuML developer should use TEST_ALL,
which generates an individual test case for each of the automatically
detected and set up computation backends. This way, tests need to
be written only once.

1 // original fixture class of Google Test
2 class FIXTURE_TEST {

3 FIXTURE_TEST () {

4 // setup code here

5}

6 %
8 // forward definition inheriting from the fixture
9  #define INTECEPTOR_FORWARD_DEFINITION(FIXTURE) \
10 class FIXTURE## _Interceptor : public FIXTURE { \
11 protected: \

12 void test(); \

B3}

15 // per-backend test generator

16 #define TEST_BACKEND_F (FIXTURE, BACKEND) \
17 TEST_F (FIXTURE## _Interceptor) { \

18 // set backend

19 juml::setBackend (BACKEND); \

20 // call the test case

21 this->test(); \

22 3

24 // definition of the main macro for all backends
25 #define TEST_ALL_F(FIXTURE) \

26 TEST_INTERCEPTOR_FORWARD_DEFINITION(FIXTURE) \
27 TEST_BACKEND_F (FIXTURE, juml::Backend::CPU) \

28 #ifdef OTHER_BACKEND \

29 TEST_BACKEND_F (FIXTUREm OTHER_BACKEND) \

30  #endif \

31 void FIXTURE## _Interceptor::test

34 TEST_ALL_F(FIXTURE_TEST, FEATURE) {
35 // test code here

36 3

Listing 4: TEST_ALL_F macro implementation sketch.

Moreover, there is also a variant that allows the developer to
utilize test fixtures. This is particularly interesting for testing data
analysis code as it usually requires to load a particular test data
set on the which correct analysis is tried. For this purpose, JuML
offers an additional TEST_ALL_F macro for unit test cases with
fixtures. While the implementation of TEST_ALL is straightforward,
the latter is not. It requires the generation of an additional external

fixture class, similar to what Google Test is doing behind the scenes,
in order to encapsulate the data generation. Unlike the generated
Google Test cases, however, the call needs to be intercepted and
the correct computational backend set beforehand. Therefore JuML
needs to mimic this behavior and assign it accordingly. Listing 4
shows an algorithmic sketch of how the TEST_ALL_F macro has
been implemented.

Furthermore, JuML provides an extension to the test runner
CTest [27] that is uses to execute the tests distributed on the clus-
ter system. The added ADD_MPI_TEST function again registers an
individual test for each of the used node counts, which enables
better error tracing. In this function, common problematic edge
cases are checked, such as a node count that is a prime number or
the usage of just a single core. Application developers can override
these node allocations and provide their own tested node counts
at any time. Generally, JuML’s testing tries to keep the number of
tested nodes low, in order to preserve computation time of project
allocations. In addition to that, there are also a number of standard
data sets already included in the JuML bundle, such as Fisher’s iris
data set that are not only useful for code correction tests, but also
to benchmark freshly implemented new data analysis methods.

5 USAGE IN PRACTICE

JuML is already used in a number of scientific research projects. As
a first case study demonstrating JuML'’s benefits, we describe here
a remote sensing problem that employs JuML’s artificial neural
network (ANN) implementation in order to perform land cover
type classification [35]. This means that a probabilistic model is
constructed that can classify each pixel of a satellite image, as
seen in Figure 2a, according to its land cover type, e.g., field, road,
building, etc. To achieve this, a neural network learns patterns from
annotated ground truth data and should then be able to detect said
patterns in new, unseen data. With such a neural network, it is
possible to automatically generate parts of street maps or monitor
urban planning efforts. Figure 2b depicts an example from the city
of Rome analyzed in this way to predict land cover types.

LSS
(b) Land cover types.
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Figure 2: Example of a remote sensing land cover type pre-
diction problem. Aerial image of Rome with a geometrical
resolution of 1.3 m and 55 different frequency bands.
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From the domain scientists’ point of view, i.e., the remote sensing
experts, JuML has greatly helped in providing faster experimen-
tation, while keeping the code similar in complexity compared to
single-threaded implementations. If the exact same neural network
would have been implemented in Python using state-of-the-art
deep learning frameworks, such as Keras or Lasagne, the actual
analysis code would have been very similar in length (off by less
than ten lines of code). However, those frameworks can only fa-
cilitate a single GPU on a single node. JuML instead allows the
distribution of the computation across multiple nodes simply by
passing an additional argument, the MPI communicator, to the al-
gorithm. Using this approach, the experimentation computed much
faster: using eight processing nodes yielded a speed-up of five, or
in other words, only one fifth of the time was required to obtain
the solution. With an overall prediction accuracy of ~91, 1% the
land cover types have been predicted mostly accurately achieving
comparable results to other recent studies, such as for example
Cavallaro et al. [10]. The experimentation was performed on the JU-
RECA supercomputer [24] using multiple GPGPU compute nodes,
each having two CUDA-aware [31] NVIDIA K80s. Figure 3 shows
the obtained speed-ups during the training phase with a batch size
of 100.
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Figure 3: ANN Speedup with 1000 hidden neurons on the
Rome land cover type classification problem.

Another example for JuML’s application is the benchmarking of
the data analysis hardware module of the experimental DEEP-EST
supercomputing system [13]. One of the project’s use cases will per-
form object detection and segmentation in multi-dimensional point
clouds. These are spatial coordinate meshes of electro-magnetic
wave reflections off surfaces, usually recorded by autonomous Li-
DAR vehicles or drones. Analysis goals include the identification of
buildings and structures that can then be used for the generation
of maps or city planing change tracking. An example of such a
four-dimensional point cloud of the old town of Bremen, including
already segmented objects, can be found in Figure 4. JuML supports
the implementation of the use case in two major ways. First, it pro-
vides all required low-level routines that are needed for the main
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analysis algorithm, i.e. HPDBSCAN [19], to be ported to the new
platform. Second, and even more important, it also significantly
assists in scaling the analysis application to larger data scales. The
project plan is to not only investigate a single town, but to analyze
the point cloud of the entire nation of the Netherlands. The transi-
tion in this case is going to be transparent if realized with JuML,
as it simply requires exchanging the data path origin. Our library
then takes care of the correct data distribution using the afore-
mentioned Dataset class. This will drastically reduce the amount
of code having to be written, thus reduces sources for errors and
speeds up development. Due to the fact that the DEEP-EST project
is still underway, we are unfortunately not yet able to show any
scalability or speed-up plots at this time.

(a) Raw data.

(b) Segmented objects.

Figure 4: Example of four-dimensional point cloud data of
the old town of Bremen. The four dimensions are the spatial
coordinates and the heat radiation off the surface.

6 CONCLUSION AND FUTURE WORK

In this work, we have recapitulated the lack of thorough appli-
cation of good software engineering practices in building high
performance community applications. With the emerging field of
large scale data analysis arises the opportunity to employ software
engineering approaches right from the start. We have therefore
introduced the HPC data analysis library JuML, that enables easy
encapsulation of data access and distribution can easily be encap-
sulated and provides common interfaces for algorithm classes that
allow a simple and high-level definition of a scalable parallaleliza-
tion strategy for application developers. Reusable low-level compo-
nents like global sorting routines or class-normalizers enable the
effective implementation of additional library features, such as new
analysis algorithms, by library developers. The incorporation of
coprocessors in heterogeneous cluster systems can be achieved via
the hardware abstraction technology ArrayFire, serving as JuML’s
computation engine. This made it a prime for usage in various
research projects, such as for example the benchmarking suite for
data-analysis module of the experimental DEEP-EST system, as
well as the presented land cover classification use case. In the lat-
ter, we have achieved a peak speed-up of up 6.59 using 12 graphic
cards, while maintaining the same code length compared to non
distributed state-of-the-art libraries.

Contrary to other fields, the question of performance testing is of
paramount interest for the HPC community. In our future work, we
will therefore strive to find the major performance tuning parame-
ters and try to abstract them in some form of hardware abstraction
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layer. The important measurement metric here is the parallel ef-
ficiency, which measures whether a scalable implementation can
maintain its execution time.
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