000841438 001__ 841438
000841438 005__ 20210129232019.0
000841438 0247_ $$2Handle$$a2128/16273
000841438 037__ $$aFZJ-2017-08484
000841438 041__ $$aEnglish
000841438 1001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b0$$eCorresponding author$$ufzj
000841438 1112_ $$aHBP student conference 2017$$cVienna$$d2017-02-08 - 2017-02-10$$wAustria
000841438 245__ $$aNestMC: A morphologically detailed neural network simulator for modern high performance computer architectures
000841438 260__ $$c2017
000841438 3367_ $$033$$2EndNote$$aConference Paper
000841438 3367_ $$2BibTeX$$aINPROCEEDINGS
000841438 3367_ $$2DRIVER$$aconferenceObject
000841438 3367_ $$2ORCID$$aCONFERENCE_POSTER
000841438 3367_ $$2DataCite$$aOutput Types/Conference Poster
000841438 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1587374467_5748$$xOther
000841438 520__ $$aNestMC is a new multicompartment neural network simulator currently under development as a collaboration between the Neuroscience SimLab at the Forschungszentrum Jülich, Barcelona Supercomputing Center and the Swiss National Supercomputing Center under the aegis of the NEST Initiative. NestMC will enable new scales and classes of morphologically detailed network simulations on current and future supercomputing architectures.A number of "many-core" architectures such as GPU and Intel Xeon Phi based systems are currently available, to optimally use these emerging architecture new approaches in software development and algorithm design are needed. NestMC is being written specifically with this in mind; it aims to be a flexible platform for neural network simulation, while keeping interoperability with models and workflows of NEST and NEURON.The improvements in performance and flexibility in themselves will enable a variety of novel experiments, but the design is not finalised, and is driven by the requirements of the neuroscientific community. The prototype is open source (1) and we invite you to have a look. We are interested in your ideas for features which will make new science possible: we ask you to think outside of the box and build this next generation neurosimulator together with us.What directions do you want us to go in?•	Simulate large morphological detailed networks for longer time scales: Study of slow developing phenomena.•	Reduce the time to solution: Perform more repeat experiments for increased statistical power.•	Create high performance interfaces with other software: Perform online statistical analysis and visualization of your running models, study the brain at multiple scales with specialized tools, or embed detailed networks in physically modelled animals.•	Optimize dynamic data structures for models with time-varying number of neurons, synapses and compartments: simulate neuronal development, healing after injury and age related neuronal degeneration.Do you have other great ideas? Let us know!
000841438 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000841438 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000841438 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000841438 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000841438 7001_ $$0P:(DE-HGF)0$$aCumming, B.$$b1
000841438 7001_ $$0P:(DE-HGF)0$$aYates, S.$$b2
000841438 7001_ $$0P:(DE-HGF)0$$aKarakasis, V.$$b3
000841438 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b4$$ufzj
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.pdf$$yOpenAccess
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.gif?subformat=icon$$xicon$$yOpenAccess
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841438 8564_ $$uhttps://juser.fz-juelich.de/record/841438/files/Poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841438 909CO $$ooai:juser.fz-juelich.de:841438$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000841438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b0$$kFZJ
000841438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b4$$kFZJ
000841438 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000841438 9141_ $$y2017
000841438 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841438 920__ $$lyes
000841438 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000841438 980__ $$aposter
000841438 980__ $$aVDB
000841438 980__ $$aI:(DE-Juel1)JSC-20090406
000841438 980__ $$aUNRESTRICTED
000841438 9801_ $$aFullTexts