000841492 001__ 841492
000841492 005__ 20240711092305.0
000841492 0247_ $$2Handle$$a2128/16356
000841492 0247_ $$2ISSN$$a1866-1793
000841492 020__ $$a978-3-95806-268-9
000841492 037__ $$aFZJ-2017-08536
000841492 041__ $$aGerman
000841492 1001_ $$0P:(DE-Juel1)161590$$aSeebold, Sören$$b0$$eCorresponding author$$gmale$$ufzj
000841492 245__ $$aEinfluss der Kristallisation auf das Fließverhalten oxidischer Schmelzen$$f- 2016-12-31
000841492 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000841492 300__ $$a168 S.
000841492 3367_ $$2DataCite$$aOutput Types/Dissertation
000841492 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000841492 3367_ $$2ORCID$$aDISSERTATION
000841492 3367_ $$2BibTeX$$aPHDTHESIS
000841492 3367_ $$02$$2EndNote$$aThesis
000841492 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1515139948_2792
000841492 3367_ $$2DRIVER$$adoctoralThesis
000841492 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v393
000841492 502__ $$aRWTH Aachen, Diss., 2017$$bDissertation$$cRWTH Aachen$$d2017
000841492 520__ $$aNumerous technical applications in the energy and metallurgical industries demand a fundamental knowledge of the flow of slags. In particular, the operation of an entrained flow gasifier is challenging as the slag has to be reliably discharged. The slag consists of unburned inorganic matter, usually oxides. Crystallization in this oxide melt influences the flow behavior of the slag because of the occurring precipitates. In this study the mechanisms and impact of crystallization on the flow of oxide slags were investigated. For this purpose, isothermal viscosity measurements were conducted on fossil and renewable solid fuel slags in order to examine the rheological evolution over time caused by the crystallization. It has been demonstrated that the evolution of viscosity of a sub-liquidus melt depends strongly on time, as well as on temperature and composition. Using a rotational high-temperature viscometer, it was found that the crystallization during flow could be separated into three time regimes: a lag-time, in which the undercooled melt behaved as an Arrhenius-liquid; the kinetic-driven crystallization accompanied by an increase of the viscosity; and, finally, the rheological equilibrium that is represented by a constant viscosity. Furthermore, an increase of viscosity caused by crystallization was accompanied by a shift from Newtonian to non-Newtonian flow; here, shear thinning flow indicated the existence of precipitates. SEM was used to examine the crystalline precipitates. The evolution of flow was used to create time-temperature-transformation diagrams. It was observed that an increase of the degree of supercooling decreases the incubation as well as the crystallization period. The crystallization of the oxide melt follows the classical theory of crystallization. Moreover, it was shown that the change of viscosity might be used as morphological information to describe kinetic parameters. The conclusions from the experimental results regarding the influence of crystallization on the flow of oxide melts were transferred to an empirical model. The model considers the physical influence of the crystals and the chemical change of the bulk composition caused by the crystallization. Therefore, the concept of the resulting relative viscosity was introduced, in order to describe the physical and chemical effects of crystallization. The evolution of viscosity from the metastable to the equilibrium state was described by a kinetic theory. The results of the model correlate well with the experimental observations.
000841492 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.pdf$$yOpenAccess
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.gif?subformat=icon$$xicon$$yOpenAccess
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841492 8564_ $$uhttps://juser.fz-juelich.de/record/841492/files/Energie_Umwelt_393.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841492 909CO $$ooai:juser.fz-juelich.de:841492$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000841492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841492 9141_ $$y2017
000841492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161590$$aForschungszentrum Jülich$$b0$$kFZJ
000841492 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000841492 920__ $$lyes
000841492 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000841492 9801_ $$aFullTexts
000841492 980__ $$aphd
000841492 980__ $$aVDB
000841492 980__ $$abook
000841492 980__ $$aI:(DE-Juel1)IEK-2-20101013
000841492 980__ $$aUNRESTRICTED
000841492 981__ $$aI:(DE-Juel1)IMD-1-20101013