000841495 001__ 841495
000841495 005__ 20210129232024.0
000841495 0247_ $$2doi$$a10.1088/1361-6641/aa91ef
000841495 0247_ $$2ISSN$$a0268-1242
000841495 0247_ $$2ISSN$$a1361-6641
000841495 0247_ $$2WOS$$aWOS:000414194400003
000841495 0247_ $$2altmetric$$aaltmetric:32011784
000841495 037__ $$aFZJ-2017-08539
000841495 041__ $$aEnglish
000841495 082__ $$a530
000841495 1001_ $$0P:(DE-HGF)0$$aAlagha, S.$$b0$$eCorresponding author
000841495 245__ $$aElectrical properties of lightly Ga-doped ZnO nanowires
000841495 260__ $$aBristol$$bIOP Publ.$$c2017
000841495 3367_ $$2DRIVER$$aarticle
000841495 3367_ $$2DataCite$$aOutput Types/Journal article
000841495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516103784_14951
000841495 3367_ $$2BibTeX$$aARTICLE
000841495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841495 3367_ $$00$$2EndNote$$aJournal Article
000841495 520__ $$aWe investigated the growth, crystal structure, elemental composition and electrical transport characteristics of ZnO nanowires, a promising candidate for optoelectronic applications in the UV-range. Nominally-undoped and Ga-doped ZnO nanowires were grown by metal-organic chemical vapor deposition. Photoluminescence measurements confirmed the incorporation of Ga via donor-bound exciton emission. With atom-probe tomography we estimated an upper limit of the Ga impurity concentration (${10}^{18}\,{\mathrm{cm}}^{-3}$). We studied the electrical transport characteristics of these nanowires with a W-nanoprobe technique inside a scanning electron microscope and with lithographically-defined contacts allowing back-gated measurements. An increase in apparent resistivity by two orders of magnitude with decreasing radius was measured with both techniques with a much larger distribution width for the nanoprobe method. A drop in the effective carrier concentration and mobility was found with decreasing radius which can be attributed to carrier depletion and enhanced scattering due to surface states. Little evidence of a change in resistivity was observed with Ga doping, which indicates that the concentration of native or background dopants is higher than the Ga doping concentration.
000841495 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000841495 588__ $$aDataset connected to CrossRef
000841495 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000841495 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000841495 7001_ $$0P:(DE-Juel1)140272$$aHeedt, S.$$b1
000841495 7001_ $$0P:(DE-Juel1)165897$$aVakulov, Daniil$$b2
000841495 7001_ $$0P:(DE-HGF)0$$aMohammadbeigi, F.$$b3
000841495 7001_ $$0P:(DE-HGF)0$$aKumar, E Senthil$$b4
000841495 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b5
000841495 7001_ $$0P:(DE-HGF)0$$aIsheim, D.$$b6
000841495 7001_ $$0P:(DE-HGF)0$$aWatkins, S. P.$$b7
000841495 7001_ $$0P:(DE-HGF)0$$aKavanagh, K. L.$$b8
000841495 773__ $$0PERI:(DE-600)1361285-2$$a10.1088/1361-6641/aa91ef$$gVol. 32, no. 12, p. 125010 -$$n12$$p125010 -$$tSemiconductor science and technology$$v32$$x1361-6641$$y2017
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.pdf$$yRestricted
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.gif?subformat=icon$$xicon$$yRestricted
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841495 8564_ $$uhttps://juser.fz-juelich.de/record/841495/files/Alagha_2017_Semicond._Sci._Technol._32_125010.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841495 909CO $$ooai:juser.fz-juelich.de:841495$$pVDB
000841495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich$$b1$$kFZJ
000841495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165897$$aForschungszentrum Jülich$$b2$$kFZJ
000841495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b5$$kFZJ
000841495 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000841495 9141_ $$y2017
000841495 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841495 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000841495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMICOND SCI TECH : 2015
000841495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841495 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841495 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841495 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841495 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841495 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841495 920__ $$lyes
000841495 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000841495 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841495 980__ $$ajournal
000841495 980__ $$aVDB
000841495 980__ $$aI:(DE-Juel1)PGI-9-20110106
000841495 980__ $$aI:(DE-82)080009_20140620
000841495 980__ $$aUNRESTRICTED