000841497 001__ 841497
000841497 005__ 20210129232024.0
000841497 0247_ $$2doi$$a10.1039/C7NR05201D
000841497 0247_ $$2ISSN$$a2040-3364
000841497 0247_ $$2ISSN$$a2040-3372
000841497 0247_ $$2WOS$$aWOS:000416824100031
000841497 037__ $$aFZJ-2017-08541
000841497 041__ $$aEnglish
000841497 082__ $$a600
000841497 1001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b0
000841497 245__ $$aStrain relaxation and ambipolar electrical transport in GaAs/InSb core–shell nanowires
000841497 260__ $$aCambridge$$bRSC Publ.$$c2017
000841497 3367_ $$2DRIVER$$aarticle
000841497 3367_ $$2DataCite$$aOutput Types/Journal article
000841497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516103896_14944
000841497 3367_ $$2BibTeX$$aARTICLE
000841497 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841497 3367_ $$00$$2EndNote$$aJournal Article
000841497 520__ $$aThe growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core–shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core–shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core–shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.
000841497 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000841497 588__ $$aDataset connected to CrossRef
000841497 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000841497 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000841497 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b1$$eCorresponding author
000841497 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b2
000841497 7001_ $$0P:(DE-HGF)0$$aHassan, Ali Al$$b3
000841497 7001_ $$0P:(DE-Juel1)162238$$aHackemüller, Franz Josef$$b4
000841497 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b5
000841497 7001_ $$0P:(DE-HGF)0$$aPietsch, Ullrich$$b6
000841497 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
000841497 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8
000841497 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b9
000841497 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C7NR05201D$$gVol. 9, no. 46, p. 18392 - 18401$$n46$$p18392 - 18401$$tNanoscale$$v9$$x2040-3372$$y2017
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.pdf$$yRestricted
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.gif?subformat=icon$$xicon$$yRestricted
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841497 8564_ $$uhttps://juser.fz-juelich.de/record/841497/files/c7nr05201d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841497 909CO $$ooai:juser.fz-juelich.de:841497$$pVDB
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich$$b0$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b1$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich$$b2$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162238$$aForschungszentrum Jülich$$b4$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b5$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b7$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
000841497 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b9$$kFZJ
000841497 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000841497 9141_ $$y2017
000841497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000841497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841497 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841497 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841497 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841497 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841497 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000841497 920__ $$lyes
000841497 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000841497 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841497 9201_ $$0I:(DE-Juel1)IBN-2-20090406$$kIBN-2$$lInstitut für Bio- und Nanosysteme - Bioelektronik$$x2
000841497 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x3
000841497 980__ $$ajournal
000841497 980__ $$aVDB
000841497 980__ $$aI:(DE-Juel1)PGI-9-20110106
000841497 980__ $$aI:(DE-82)080009_20140620
000841497 980__ $$aI:(DE-Juel1)IBN-2-20090406
000841497 980__ $$aI:(DE-Juel1)PGI-10-20170113
000841497 980__ $$aUNRESTRICTED