000841500 001__ 841500
000841500 005__ 20210129232024.0
000841500 0247_ $$2doi$$a10.1088/1361-6528/aa887d
000841500 0247_ $$2ISSN$$a0957-4484
000841500 0247_ $$2ISSN$$a1361-6528
000841500 0247_ $$2WOS$$aWOS:000412649600002
000841500 037__ $$aFZJ-2017-08544
000841500 082__ $$a530
000841500 1001_ $$0P:(DE-HGF)0$$aHaas, Fabian$$b0
000841500 245__ $$aAnisotropic phase coherence in GaAs/InAs core/shell nanowires
000841500 260__ $$aBristol$$bIOP Publ.$$c2017
000841500 3367_ $$2DRIVER$$aarticle
000841500 3367_ $$2DataCite$$aOutput Types/Journal article
000841500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517411503_28752
000841500 3367_ $$2BibTeX$$aARTICLE
000841500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841500 3367_ $$00$$2EndNote$$aJournal Article
000841500 520__ $$aLow-temperature transport in nanowires is accompanied by phase-coherent effects, which are observed as modulation of the conductance in an external magnetic field. In the GaAs/InAs core/shell nanowires investigated here, these are h/e flux periodic oscillations in a magnetic field aligned parallel to the nanowire axis and aperiodic universal conductance fluctuations in a field aligned perpendicularly to the nanowire axis. Both electron interference effects are used to analyse the phase coherence of the system. Temperature-dependent measurements are carried out, in order to derive the phase coherence lengths in the cross-sectional plane as well as along the nanowire sidewalls. It is found that these values show a strong anisotropy, which can be explained by the crystal structure of the GaAs/InAs core/shell nanowire. For nanowires with a radius as low as 45 nm, flux periodic oscillations were observed up to a temperature of 55 K.
000841500 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000841500 588__ $$aDataset connected to CrossRef
000841500 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000841500 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000841500 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b1
000841500 7001_ $$0P:(DE-HGF)0$$aWenz, Tobias$$b2
000841500 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b3
000841500 7001_ $$0P:(DE-HGF)0$$aRieger, Torsten$$b4
000841500 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b5$$ufzj
000841500 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000841500 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b7
000841500 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$eCorresponding author
000841500 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/aa887d$$gVol. 28, no. 44, p. 445202 -$$n44$$p445202 -$$tNanotechnology$$v28$$x1361-6528$$y2017
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.pdf$$yRestricted
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.gif?subformat=icon$$xicon$$yRestricted
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841500 8564_ $$uhttps://juser.fz-juelich.de/record/841500/files/Haas_2017_Nanotechnology_28_445202.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841500 909CO $$ooai:juser.fz-juelich.de:841500$$pVDB
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b1$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich$$b3$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich$$b5$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b7$$kFZJ
000841500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
000841500 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000841500 9141_ $$y2017
000841500 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841500 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000841500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2015
000841500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841500 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841500 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841500 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841500 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841500 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841500 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841500 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841500 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841500 920__ $$lyes
000841500 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000841500 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841500 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x2
000841500 980__ $$ajournal
000841500 980__ $$aVDB
000841500 980__ $$aI:(DE-Juel1)PGI-9-20110106
000841500 980__ $$aI:(DE-82)080009_20140620
000841500 980__ $$aI:(DE-Juel1)PGI-2-20110106
000841500 980__ $$aUNRESTRICTED