000841567 001__ 841567
000841567 005__ 20210129232035.0
000841567 0247_ $$2doi$$a10.1021/jacs.7b10343
000841567 0247_ $$2pmid$$apmid:29235346
000841567 0247_ $$2WOS$$aWOS:000422813300060
000841567 0247_ $$2altmetric$$aaltmetric:33346387
000841567 037__ $$aFZJ-2017-08605
000841567 082__ $$a540
000841567 1001_ $$0P:(DE-Juel1)151182$$aBarz, Bogdan$$b0$$eCorresponding author$$ufzj
000841567 245__ $$aPathways of amyloid-β aggregation depend on oligomer shape
000841567 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000841567 3367_ $$2DRIVER$$aarticle
000841567 3367_ $$2DataCite$$aOutput Types/Journal article
000841567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517573247_13746
000841567 3367_ $$2BibTeX$$aARTICLE
000841567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841567 3367_ $$00$$2EndNote$$aJournal Article
000841567 520__ $$aOne of the the main research topics related to Alzheimer’s disease is the aggregation of the amyloid-β peptide, which was shown to follow different pathways for the two major alloforms of the peptide, Aβ40 and the more toxic Aβ42. Experimental studies emphasized that oligomers of specific sizes appear in the early aggregation process in different quantities and might be the key toxic agents for each of the two alloforms. We use transition networks derived from all-atom molecular dynamics simulations to show that the oligomers leading to the type of oligomer distributions observed in experiments originate from compact conformations. Extended oligomers, on the other hand, contribute more to the production of larger aggregates thus driving the aggregation pro cess. We further demonstrate that differences in the aggregation pathways of the two Aβ alloforms occur as early as during the dimer stage. The higher solvent-exposure of hydrophobic residues in Aβ42 oligomers contributes to the different aggregation pathways of both alloforms and also to the increased cytotoxicity of Aβ42.
000841567 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000841567 7001_ $$0P:(DE-Juel1)170011$$aLiao, Qinghua$$b1
000841567 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author$$ufzj
000841567 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.7b10343$$n1$$p319–327$$tJournal of the American Chemical Society$$v140$$x0002-7863$$y2018
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.pdf$$yRestricted
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.gif?subformat=icon$$xicon$$yRestricted
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841567 8564_ $$uhttps://juser.fz-juelich.de/record/841567/files/jacs.7b10343.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841567 909CO $$ooai:juser.fz-juelich.de:841567$$pVDB
000841567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151182$$aForschungszentrum Jülich$$b0$$kFZJ
000841567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000841567 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000841567 9141_ $$y2018
000841567 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841567 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015
000841567 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841567 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841567 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841567 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841567 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841567 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841567 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841567 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841567 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000841567 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841567 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000841567 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015
000841567 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000841567 980__ $$ajournal
000841567 980__ $$aVDB
000841567 980__ $$aI:(DE-Juel1)ICS-6-20110106
000841567 980__ $$aUNRESTRICTED
000841567 981__ $$aI:(DE-Juel1)IBI-7-20200312