001     841567
005     20210129232035.0
024 7 _ |a 10.1021/jacs.7b10343
|2 doi
024 7 _ |a pmid:29235346
|2 pmid
024 7 _ |a WOS:000422813300060
|2 WOS
024 7 _ |a altmetric:33346387
|2 altmetric
037 _ _ |a FZJ-2017-08605
082 _ _ |a 540
100 1 _ |a Barz, Bogdan
|0 P:(DE-Juel1)151182
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Pathways of amyloid-β aggregation depend on oligomer shape
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517573247_13746
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One of the the main research topics related to Alzheimer’s disease is the aggregation of the amyloid-β peptide, which was shown to follow different pathways for the two major alloforms of the peptide, Aβ40 and the more toxic Aβ42. Experimental studies emphasized that oligomers of specific sizes appear in the early aggregation process in different quantities and might be the key toxic agents for each of the two alloforms. We use transition networks derived from all-atom molecular dynamics simulations to show that the oligomers leading to the type of oligomer distributions observed in experiments originate from compact conformations. Extended oligomers, on the other hand, contribute more to the production of larger aggregates thus driving the aggregation pro cess. We further demonstrate that differences in the aggregation pathways of the two Aβ alloforms occur as early as during the dimer stage. The higher solvent-exposure of hydrophobic residues in Aβ42 oligomers contributes to the different aggregation pathways of both alloforms and also to the increased cytotoxicity of Aβ42.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
700 1 _ |a Liao, Qinghua
|0 P:(DE-Juel1)170011
|b 1
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/jacs.7b10343
|0 PERI:(DE-600)1472210-0
|n 1
|p 319–327
|t Journal of the American Chemical Society
|v 140
|y 2018
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841567/files/jacs.7b10343.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841567
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2015
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21