000841587 001__ 841587
000841587 005__ 20240712100916.0
000841587 0247_ $$2doi$$a10.5194/acp-17-2311-2017
000841587 0247_ $$2ISSN$$a1680-7316
000841587 0247_ $$2ISSN$$a1680-7324
000841587 0247_ $$2Handle$$a2128/16300
000841587 0247_ $$2WOS$$aWOS:000395118000006
000841587 0247_ $$2altmetric$$aaltmetric:16375799
000841587 037__ $$aFZJ-2017-08625
000841587 041__ $$aEnglish
000841587 082__ $$a550
000841587 1001_ $$00000-0001-5255-6869$$aSchumann, Ulrich$$b0$$eCorresponding author
000841587 245__ $$aLong-lived contrails and convective cirrus above the tropical tropopause
000841587 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000841587 3367_ $$2DRIVER$$aarticle
000841587 3367_ $$2DataCite$$aOutput Types/Journal article
000841587 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513777394_31139
000841587 3367_ $$2BibTeX$$aARTICLE
000841587 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841587 3367_ $$00$$2EndNote$$aJournal Article
000841587 520__ $$aThis study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to −88 °C from measurements with the Russian high-altitude research aircraft M-55 "Geophysica", as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system "Hector" of 16 November 2005. The upper part of the contrail formed at 19 km altitude in the tropical lower stratosphere at ∼ 60 % relative humidity over ice at −82 °C. The ∼ 1 h lifetime is explained by engine water emissions, slightly enhanced humidity from Hector, low temperature, low turbulence, and possibly nitric acid hydrate formation. The long persistence suggests large contrail coverage in case of a potential future increase of air traffic in the lower stratosphere. (2) Cirrus observed above the strongly convective Hector cloud on 30 November 2005 was previously interpreted as cirrus from overshooting convection. Here we show that parts of the cirrus were caused by contrails or are mixtures of convective and contrail cirrus. The in situ data together with data from an upward-looking lidar on the German research aircraft "Falcon", the CPOL radar near Darwin, and NOAA-AVHRR satellites provide a sufficiently complete picture to distinguish between contrail and convective cirrus parts. Plume positions are estimated based on measured or analyzed wind and parameterized wake vortex descent. Most of the non-volatile aerosol measured over Hector is traceable to aircraft emissions. Exhaust emission indices are derived from a self-match experiment of the Geophysica in the polar stratosphere in 2010. The number of ice particles in the contrails is less than 1 % of the number of non-volatile aerosol particles, possibly because of sublimation losses and undetected very small ice particles. The radar data show that the ice water content in convective overshoots is far higher than measured along the flight path. These findings add insight into overshooting convection and are of relevance with respect to hydration of the lower stratosphere.
000841587 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000841587 588__ $$aDataset connected to CrossRef
000841587 7001_ $$0P:(DE-HGF)0$$aKiemle, Christoph$$b1
000841587 7001_ $$0P:(DE-HGF)0$$aSchlager, Hans$$b2
000841587 7001_ $$0P:(DE-HGF)0$$aWeigel, Ralf$$b3
000841587 7001_ $$0P:(DE-HGF)0$$aBorrmann, Stephan$$b4
000841587 7001_ $$0P:(DE-HGF)0$$aD&apos$$b5
000841587 7001_ $$00000-0003-1349-6650$$aAmato, Francesco$$b6
000841587 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b7$$ufzj
000841587 7001_ $$0P:(DE-HGF)0$$aMatthey, Renaud$$b8
000841587 7001_ $$0P:(DE-HGF)0$$aProtat, Alain$$b9
000841587 7001_ $$00000-0001-8925-7731$$aVoigt, Christiane$$b10
000841587 7001_ $$0P:(DE-Juel1)168493$$aVolk, C. Michael$$b11
000841587 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-2311-2017$$gVol. 17, no. 3, p. 2311 - 2346$$n3$$p2311 - 2346$$tAtmospheric chemistry and physics$$v17$$x1680-7324$$y2017
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.pdf$$yOpenAccess
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.gif?subformat=icon$$xicon$$yOpenAccess
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841587 8564_ $$uhttps://juser.fz-juelich.de/record/841587/files/acp-17-2311-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841587 909CO $$ooai:juser.fz-juelich.de:841587$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000841587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b7$$kFZJ
000841587 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000841587 9141_ $$y2017
000841587 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000841587 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841587 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841587 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000841587 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841587 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841587 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841587 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841587 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841587 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841587 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000841587 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841587 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841587 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841587 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000841587 9801_ $$aFullTexts
000841587 980__ $$ajournal
000841587 980__ $$aVDB
000841587 980__ $$aUNRESTRICTED
000841587 980__ $$aI:(DE-Juel1)IEK-7-20101013
000841587 981__ $$aI:(DE-Juel1)ICE-4-20101013