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Abstract. The 2015/2016 Arctic winter was one of the

coldest stratospheric winters in recent years. A stable vor-

tex formed by early December and the early winter was

exceptionally cold. Cold pool temperatures dropped below

the nitric acid trihydrate (NAT) existence temperature of

about 195 K, thus allowing polar stratospheric clouds (PSCs)

to form. The low temperatures in the polar stratosphere

persisted until early March, allowing chlorine activation

and catalytic ozone destruction. Satellite observations indi-

cate that sedimentation of PSC particles led to denitrifica-

tion as well as dehydration of stratospheric layers. Model

simulations of the 2015/2016 Arctic winter nudged to-

ward European Centre for Medium-Range Weather Fore-

casts (ECMWF) analysis data were performed with the at-

mospheric chemistry–climate model ECHAM5/MESSy At-

mospheric Chemistry (EMAC) for the Polar Stratosphere

in a Changing Climate (POLSTRACC) campaign. POL-

STRACC is a High Altitude and Long Range Research

Aircraft (HALO) mission aimed at the investigation of the

structure, composition and evolution of the Arctic upper

troposphere and lower stratosphere (UTLS). The chemi-

cal and physical processes involved in Arctic stratospheric

ozone depletion, transport and mixing processes in the

UTLS at high latitudes, PSCs and cirrus clouds are investi-

gated. In this study, an overview of the chemistry and dy-

namics of the 2015/2016 Arctic winter as simulated with

EMAC is given. Further, chemical–dynamical processes

such as denitrification, dehydration and ozone loss dur-

ing the 2015/2016 Arctic winter are investigated. Compar-

isons to satellite observations by the Aura Microwave Limb

Sounder (Aura/MLS) as well as to airborne measurements

with the Gimballed Limb Observer for Radiance Imaging of

the Atmosphere (GLORIA) performed aboard HALO during

the POLSTRACC campaign show that the EMAC simula-

tions nudged toward ECMWF analysis generally agree well

with observations. We derive a maximum polar stratospheric

O3 loss of ∼ 2 ppmv or 117 DU in terms of column ozone

in mid-March. The stratosphere was denitrified by about 4–

8 ppbv HNO3 and dehydrated by about 0.6–1 ppmv H2O

from the middle to the end of February. While ozone loss

was quite strong, but not as strong as in 2010/2011, denitrifi-

cation and dehydration were so far the strongest observed in

the Arctic stratosphere in at least the past 10 years.

1 Introduction

Since the early 1980s (thus, for more than 30 years), substan-

tial ozone depletion has been observed each year during win-

ter and spring in the Antarctic stratosphere (WMO, 2010).

Polar ozone depletion is associated with enhanced chlo-

rine from anthropogenic chlorofluorocarbons and heteroge-

neous chemistry under cold conditions. The deep Antarctic

“hole” contrasts with the generally weaker ozone depletion

observed in the warmer Arctic (Solomon et al., 2014). Nev-

ertheless, substantial ozone depletion has been observed for

cold Arctic winters. Especially, in the past 15 years, ozone

loss in the Arctic occasionally approached the degree of
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ozone loss in the Antarctic in, e.g. winter 2004/2005 (e.g.

Manney et al., 2006; Tilmes et al., 2006; Livesey et al., 2015,

and references therein) and 2010/2011 (e.g. Manney et al.,

2011; Sinnhuber et al., 2011; Hommel et al., 2014).

Polar stratospheric clouds (PSCs) play a key role in strato-

spheric ozone destruction in the polar regions (Solomon

et al., 1986; Crutzen and Arnold, 1986). Heterogeneous re-

actions which take place on and within the PSC particles

convert halogens from relatively inert reservoir species into

forms which can destroy ozone in the polar spring (e.g. Peter,

1997; Solomon, 1999; Lowe and MacKenzie, 2008). PSCs

form at altitudes between 15 and 30 km and consist of liquid

and/or solid particles. According to their composition and

physical state, they have been classified into three different

types: (1) supercooled ternary solution (STS), (2) nitric acid

trihydrate (NAT) and (3) water ice. Liquid PSC cloud parti-

cles (STS) form by the condensation of water vapour (H2O)

and nitric acid (HNO3) on the liquid stratospheric back-

ground sulfate aerosol particles at temperatures 2–3 K below

the NAT existence temperature TNAT (∼ 195 K at 50 hPa),

while for the formation of solid cloud particles (NAT and

ice) lower temperatures are required (slightly above or below

the ice frost point Tice ∼ 188 K at 50 hPa) (e.g. Carslaw et al.,

1994; Koop et al., 1995).

Solid PSC particles can grow to larger sizes than liquid

PSC particles and finally sediment out of the stratosphere

(Fahey et al., 2001). The sedimentation of the solid particles

can lead to dehydration and/or denitrification of the strato-

sphere. Solid HNO3 containing PSC particles leading to den-

itrification can either consist of NAT or ice depending on the

prevailing formation mechanism. It has been shown that the

nucleation of NAT on ice is quite efficient (e.g. Fueglistaler

et al., 2002; Hoyle et al., 2013). The sedimentation of large

HNO3 containing ice PSC particles can lead to greater deni-

trification than the sedimentation of (typically smaller) NAT

or liquid PSC particles alone (Lowe and MacKenzie, 2008;

Wohltmann et al., 2013; Manney and Lawrence, 2016).

Denitrification limits the deactivation process of the

ozone-destroying substances in springtime and thus leads to

a prolongation of the ozone-destroying cycles (e.g. Salaw-

itch et al., 1993; Rex et al., 1997). Evidence of denitrification

has been found in the Arctic and Antarctic from in situ and

remote sensing observations (Fahey et al., 1990; Solomon,

1999; Waibel et al., 1999; Kondo et al., 2000; Santee et al.,

2000; Manney et al., 2011). Denitrification is most intense

over the Antarctic region, where large fractions of available

NOy are irreversibly removed from the stratosphere each

winter. NOy is the sum of principal reactive nitrogen species,

of which HNO3, NO, NO2, N2O5 and ClONO2 are important

in the lower stratosphere (Fahey et al., 1989). Dehydration in

the stratosphere is generally observed over the Antarctic (e.g.

Kelly et al., 1989; Vömel et al., 1995; Nedoluha et al., 2000)

but only rarely in the Arctic (e.g. Fahey et al., 1990; Vömel

et al., 1997; Pan et al., 2002; Schiller et al., 2002; Khaykin

et al., 2013).

Another factor contributing to the severity of polar ozone

destruction is the reduction of nitrogen (NOx = NO + NO2)

via the conversion of NOx into HNO3 on the surfaces of

PSCs, known as denoxification. Denoxification becomes im-

portant if temperatures are continuously low during the

course of the winter as is the case in the Antarctic (e.g.

Waibel et al., 1999). It has been shown that polar vortex sta-

bility, chlorine activation and ozone loss tend to be greater

with lower vortex temperatures (e.g. von Hobe et al., 2013).

Therefore, it is not surprising that the most severe ozone

loss ever observed in the Arctic occurred in spring 2011,

at the end of the most persistently cold Arctic winter in the

stratosphere on record (Manney et al., 2011; Sinnhuber et al.,

2011; Hommel et al., 2014).

The 2015/2016 Arctic winter was one of the coldest strato-

spheric winters in recent years. Indeed, the Arctic polar vor-

tex in the early winter 2015/2016 was the strongest and cold-

est of the last 68 years (Matthias et al., 2016). Temperatures

within the vortex dropped below TNAT, thus allowing PSCs to

form. Tropospheric and stratospheric cloud structures were

observed simultaneously over Svalbard. Synoptic-scale PSCs

extended over a nearly 8 km deep layer (Dörnbrack et al.,

2017). The low temperatures in the polar stratosphere per-

sisted until early March, allowing PSC formation, chlorine

activation and catalytic ozone destruction. Satellite obser-

vations indicate that sedimentation of PSC particles led to

denitrification as well as dehydration of stratospheric lay-

ers (Manney and Lawrence, 2016). Widespread persistent

ice PSC layers were observed by the Cloud-Aerosol Lidar

and Infrared Pathfinder Satellite Observations (CALIPSO)

(Voigt et al., 2016). Ozone destruction was strong, but not

as strong as in 2010/2011, since a major final sudden strato-

spheric warming ended the 2015/2016 Arctic winter by early

March (Manney and Lawrence, 2016).

Model simulations of the 2015/2016 Arctic winter nudged

toward European Centre for Medium-Range Weather Fore-

casts (ECMWF) analysis were performed with the atmo-

spheric chemistry–climate model ECHAM5/MESSy Atmo-

spheric Chemistry (EMAC) for the POLSTRACC (Po-

lar Stratosphere in a Changing Climate) campaign. POL-

STRACC was a HALO (High Altitude and Long Range

Research Aircraft) mission aiming at the investigation of

the structure, composition and evolution of the Arctic upper

troposphere lower stratosphere (UTLS). The chemical and

physical processes involved in Arctic stratospheric ozone de-

pletion, transport and mixing processes in the UTLS at high

latitudes, PSCs and cirrus clouds were investigated. In this

study, an overview of the chemistry and dynamics of the

2015/2016 Arctic winter as simulated with EMAC is given.

Chemical–dynamical processes such as denitrification, de-

hydration and ozone loss will be investigated and compar-

isons to satellite observations by the Aura Microwave Limb

Sounder (Aura/MLS) as well as to airborne measurements

with the Gimballed Limb Observer for Radiance Imaging of
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the Atmosphere (GLORIA) performed aboard HALO will be

shown.

2 Model simulations and observations

2.1 EMAC

The ECHAM5/MESSy Atmospheric Chemistry (EMAC)

model is a numerical chemistry and climate simulation sys-

tem that includes submodels describing tropospheric and

middle atmospheric processes and their interaction with

oceans, land and human influences (Jöckel et al., 2010). It

uses the second version of the Modular Earth Submodel Sys-

tem (MESSy2) to link multi-institutional computer codes.

The core atmospheric model is the fifth-generation Euro-

pean Centre Hamburg general circulation model (ECHAM5;

Roeckner et al., 2006). For the present study, we applied

EMAC (ECHAM5 version 5.3.02, MESSy version 2.52)

in T106L90MA and T42L90MA resolutions, i.e. with a

spherical truncation of T106 and T42 (corresponding to a

quadratic Gaussian grid of approximately 1.125◦ × 1.125◦

and 2.8◦ × 2.8◦ degrees, respectively, in latitude and longi-

tude) with 90 vertical hybrid pressure levels from the surface

up to 0.01 hPa (approximately 80 km). A Newtonian relax-

ation technique of the prognostic variables temperature, vor-

ticity, divergence and the (logarithm of the) surface pressure

above the boundary layer and below 1 hPa towards ECMWF

ERA-Interim reanalysis data (Dee et al., 2011) and ECMWF

operational analysis was applied, respectively, in order to

nudge the model dynamics towards the observed meteorol-

ogy.

For the analysis of the 2015/2016 Arctic winter, we used

the EMAC data from a T106L90 simulation that was chem-

ically initialised based on a former EMAC simulation. The

T106L90 simulation was started on 1 July 2015 and contin-

ued until 30 April 2016, applying a nudging toward ECMWF

operational analysis. For the comparisons to recent winters,

we performed an EMAC T42L90 simulation covering the

time period 1 January 2008 to 30 April 2016. The T42L90

simulation was nudged toward ECMWF ERA-Interim anal-

ysis data until 30 June 2015 and toward ECMWF operational

analysis data thereafter. In both simulations (T106L90 and

T42L90), a comprehensive chemistry setup for the strato-

sphere and troposphere is included. Reaction rate coefficients

for gas phase reactions and absorption cross sections for pho-

tolysis are taken from Atkinson et al. (2007) and S. P. Sander

et al. (2011). The applied model setup was comprised of

(among others) the following submodels: MECCA for the

gas phase chemistry (R. Sander et al., 2011), JVAL for the

calculation of photolysis rates (Sander et al., 2014), MSBM

(Multiphase Stratospheric Box Model) for the processes re-

lated to PSCs (Kirner et al., 2011), TROPOP for diagnos-

ing the tropopause and boundary layer height, SORBIT for

sampling model data along Sun-synchronous satellite orbits

(Jöckel et al., 2010) and H2O for stratospheric water vapour.

The submodel MSBM simulates the number densities,

mean radii and surface areas of sulfuric acid aerosols and

liquid and solid PSC particles. The formation of STS parti-

cles is calculated according to Carslaw et al. (1995) through

the uptake of HNO3 and H2O on the liquid binary sulfuric

acid/water particles. Ice particles are assumed to form homo-

geneously at temperatures below Tice. For the simulation of

NAT particles, the “kinetic growth NAT parameterisation” is

used. The “kinetic” parameterisation is based on the growth

and sedimentation algorithm given by Carslaw et al. (2002)

and van den Broek et al. (2004). The vapour pressure over

ice is calculated according to Marti and Mauersberger (1993)

and the vapour pressure over NAT according to Hanson and

Mauersberger (1988). NAT formation takes place as soon

as a supercooling of 3 K below TNAT is reached. The sedi-

mentation of ice particles is calculated according to Waibel

et al. (1999) and for NAT particles according to Carslaw et al.

(2002). A total of 11 heterogeneous reactions that occur on

the surfaces of liquid and solid PSC particles are considered.

A comprehensive description of the submodel MSBM can be

found in Kirner et al. (2011).

2.2 Aura/MLS

The Microwave Limb Sounder (MLS) on the Earth Ob-

serving System Aura Satellite was launched in July 2004.

The Aura/MLS instrument is an advanced successor to the

MLS instrument on the Upper Atmosphere Research satel-

lite (UARS). MLS is a limb sounding instrument that mea-

sures the thermal emission at millimetre and submillime-

tre wavelengths using seven radiometers to cover five broad

spectral regions (Waters et al., 2006). Measurements are per-

formed from the surface to 90 km with a global latitude cov-

erage from 82◦ S to 82◦ N. Vertical profiles are measured

every 165 km along the suborbital track with a horizontal

resolution of ∼ 200–500 km along track and a footprint of

∼ 3–9 km across track. Here, we use Aura/MLS version 4.2

HNO3, O3 and ClO data. The data screening criteria given

by Livesey et al. (2017) have been applied to the data.

A detailed assessment of the quality and reliability of the

Aura/MLS v2.2 HNO3 measurements can be found in Santee

et al. (2007). The HNO3 in v3.3 was significantly improved

compared to v2.2. In particular, the low bias in the strato-

sphere was largely eliminated. Measurements of v4.2 HNO3

are performed with a horizontal resolution of 400–500 km

and a vertical resolution of 3–4 km over most of the verti-

cal range. In the lower stratosphere, the precision has been

estimated to be 0.6 ppbv and the systematic uncertainty for

HNO3 is estimated to be 0.5–2 ppbv (2σ estimates) (Livesey

et al., 2017).

Detailed validation of the MLS O3 v2.2 product and com-

parisons with other data sets can be found in Jiang et al.

(2007), Froidevaux et al. (2008) and Livesey et al. (2008).

www.atmos-chem-phys.net/17/12893/2017/ Atmos. Chem. Phys., 17, 12893–12910, 2017
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In the stratosphere and above, v4.2 ozone profiles are very

similar to the v2.2 and v3.3x/v3.4x profiles. Comparisons

have indicated general agreement within 5–10 % with strato-

spheric profiles from satellite, balloon, aircraft and ground-

based data (Livesey et al., 2017).

The quality and reliability of the v2.2 MLS ClO measure-

ments were assessed in detail by Santee et al. (2008). The

ClO product was significantly improved in v3.3 and v3.4

(Livesey et al., 2013). In particular, the substantial (∼ 0.1–

0.4 ppbv) negative bias present in the v2.2 ClO values at

pressures larger than 22 hPa was mitigated to a large ex-

tent, primarily through retrieval of CH3Cl, which was a new

MLS product in v3.3 and v3.4. The ClO retrieval is largely

unchanged over much of the profile in v4.2. Measurements

of ClO are performed with a horizontal resolution of 300–

600 km and a vertical resolution of 3–4.5 km. The precision

lies generally within ±0.1 ppbv (Livesey et al., 2017). Al-

though the negative bias at the lowest retrieval levels has not

been entirely eliminated, we make no attempt to correct for

it in this analysis.

2.3 GLORIA

The Gimballed Limb Observer for Radiance Imaging of the

Atmosphere (GLORIA) combines a classical Fourier trans-

form spectrometer with a 2-D detector array. The instrument

takes limb images of the atmosphere from the flight altitude

of HALO or M-55 Geophysica down to 4 km. This results

in vertical sampling steps of about 150 m at 8 km tangent

height from a typical HALO flight level of 14 km. Individ-

ual images contain 128 pixels (spectra) in the vertical dimen-

sion and 48 pixels in the horizontal dimension. The spec-

tra associated with the pixel rows are binned to reduce un-

certainties. The spectral range of the observations currently

extends from about 780 to 1400 cm−1 (Riese et al., 2014).

The list of species with signatures in this spectral range in-

cludes temperature, H2O, HDO, O3, CH4, N2O, CFC-11,

CFC-12, HCFC-12, SF6, HNO3, N2O5, ClONO2, HO2NO2,

PAN, C2H6, H2CO and NH3. Details on the instrument de-

sign and calibration are given in Friedl-Vallon et al. (2014)

and Kleinert et al. (2014). GLORIA is operated in a high-

spectral, medium-spatial sampling (“chemistry”) mode and a

medium-spectral, high-spatial sampling (“dynamics”) mode.

The spectral samplings are 0.0625 cm−1 for the chemistry

mode and 0.625 cm−1 for the dynamics mode (Riese et al.,

2014). In this study, trace gas retrievals from measurements

in the chemistry mode are used. A first validation of the re-

trieval results in the chemistry mode can be found in Woi-

wode et al. (2015).

Figure 1. Temporal evolution of temperature (a) and surface area

density of PSC particles (liquid plus solid) (b) at northern high lat-

itudes (70–90◦ N) as a function of pressure during the 2015/2016

Arctic winter, as simulated with EMAC T106L90.

3 The 2015/2016 Arctic winter

3.1 Overview

In the 2015/2016 Arctic winter, temperatures were at record

lows from December 2015 to early February 2016 with an

unprecedented period of temperatures below the ice for-

mation threshold (Manney and Lawrence, 2016). The ex-

traordinarily strong and cold polar vortex in early winter

(November–December 2015) was caused by very low plane-

tary wave activity in the stratosphere (Matthias et al., 2016).

The Arctic winter ended in early March by a major final sud-

den stratospheric warming. By mid-March, the vortex had

been displaced far off the pole and split. The offspring vor-

tices decayed rapidly, resulting in a full breakup of the vortex

by early April (Manney and Lawrence, 2016).

In Fig. 1, the temporal evolution of temperature and PSC

surface area density at high latitudes (70–90◦ N) as a func-

tion of pressure for December 2015 to March 2016 as sim-

ulated with EMAC is shown. Temperatures below 195 K are

found between 70 and 10 hPa from early December to the

end of January. Zonal mean temperatures remained cold af-

terwards but not as cold as during December and January.

Temperatures dropped during the first cold period (Decem-

ber to the end of January) below the ice formation threshold

temperatures (Manney and Lawrence, 2016) leading to un-

precedented formation of ice PSCs as will be discussed in

more detail below (see Fig. 2). The simulated temperatures

are in good agreement with observations from Aura/MLS

(see Fig. 12 and Sect. 4.1).

Atmos. Chem. Phys., 17, 12893–12910, 2017 www.atmos-chem-phys.net/17/12893/2017/
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The extensive formation of PSCs as simulated with EMAC

can be seen in Fig. 1b. Here, the total surface area density

(liquid plus solid) is shown. The first PSCs are found in

the beginning of December and PSC formation maximises

throughout January (between 80 and 20 hPa). During the

second cold phase in February, PSCs are still present but

to a lesser extent. In Fig. 2, the surface area densities of

STS, NAT and ice as a function of pressure are shown (70–

90◦ N). Since the liquid particles have the largest surface area

density, ASTS is almost identical to APSC. PSCs consisting

of NAT are found between 150 and 20 hPa throughout De-

cember and January, and consisting of ice between 80 and

30 hPa in January. Compared to other extreme Arctic winters,

e.g. the 2010/2011 winter, much larger amounts of PSCs are

simulated in accordance with the preceding low temperatures

for the 2015/2016 Arctic winter. Furthermore, the largest sur-

face area density for ice is also simulated for the 2015/2016

Arctic winter as compared to previous Arctic winters, e.g. the

2010/2011 Arctic winter, which has been the most extreme in

that respect so far (e.g. Manney et al., 2011; Sinnhuber et al.,

2011; Hommel et al., 2014). Ice PSCs persisted in 2015/2016

over a much longer time period than in, e.g. the 2010/2011

Arctic winter, as can be seen in the EMAC results for the

2010/2011 Arctic winter shown in Khosrawi et al. (2017).

3.2 Denitrification

Solid HNO3 containing PSC particles can sediment out of

the stratosphere and thus lead to an irreversible removal of

HNO3 (denitrification). Severe denitrification was observed

by Aura/MLS in the 2015/2016 Arctic winter. Figure 3 shows

the HNO3 gas phase distribution as simulated with EMAC

for selected dates between 24 December 2015 and 12 Febru-

ary 2016 at 52 hPa. Strong gas phase removal of HNO3 is ev-

ident throughout the entire period considered here. Gas phase

HNO3 is extremely low within the Arctic vortex in December

and January, but mixing ratios increase somewhat (but still

remain quite low) in February. That this gas phase removal

of HNO3 led to a permanent removal and thus to a denitrifi-

cation of the stratosphere can be seen from the redistribution

of NOy in the model (Fig. 4).

In model simulations, denitrification can be quantified by

applying a passive NO∗
y tracer. Figure 4 shows the simulated

NOy change (1NOy) averaged over 70–90◦ N as a func-

tion of pressure and time. The unperturbed NO∗
y was simu-

lated by a passive tracer that was initialised according to the

NOy distribution on 1 December 2015. The passive tracer

is transported as all other chemical species but does not un-

dergo any chemical changes or sedimentation. The difference

of NOy and NO∗
y gives the amount of NOy that has been

denitrified/re-nitrified (1NOy = NOy − NO∗
y).

Figure 4 shows that strong denitrification is also simu-

lated with EMAC for the 2015/2016 Arctic winter. The max-

imum sequestration is reached at the end of January (about

8 ppbv). Below this layer, re-nitrification (about 4 ppbv) due

Figure 2. Temporal evolution of surface area density of STS (a),

NAT (b) and ice (c) particles at northern high latitudes (70–90◦ N)

as a function of pressure during the 2015/2016 Arctic winter

as simulated with EMAC T106L90. Note the differences in the

colour bar for Aliq (µm2 cm−3), ANAT (10−3 µm2 cm−3) and Aice

(10−1 µm2 cm−3).

to the evaporation of the sedimenting PSC particles at higher

pressure levels (lower altitudes) is clearly visible. Thus, the

amount of HNO3 that has been permanently removed (deni-

trified) is between 4 and 8 ppbv. Diabatic descent within the

polar vortex causes the downward shift of the denitrified/re-

nitrified areas.

3.3 Dehydration

The long period of temperatures below the ice formation

threshold led to much greater dehydration than previously

seen in the Arctic (Manney and Lawrence, 2016). Large

areas of ice PSC throughout January were observed with

CALIPSO that also were the greatest observed in the Arc-

tic in the 8 years of the CALIPSO data record (Voigt et al.,

2016). In the EMAC simulation, large areas of ice PSCs are

simulated throughout January (Fig. 2c). Dehydration peaks

www.atmos-chem-phys.net/17/12893/2017/ Atmos. Chem. Phys., 17, 12893–12910, 2017
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Figure 3. Distribution of HNO3 as simulated with EMAC T106L90 at 52 hPa on certain dates between 24 December 2015 and 12 Febru-

ary 2016.

Figure 4. Redistribution of NOy (1NOy ) simulated with EMAC

T106L90 (difference of NOy and the passive tracer NO∗
y

(1NOy = NOy − NO∗
y , averaged over 70–90◦ N).

in the EMAC simulation towards the end of January and is

also the strongest simulated dehydration compared to other

cold winters, e.g. the 2010/2011 Arctic winter. The simu-

lated dehydration in EMAC is also in agreement with ob-

servations. Trace gas measurements from Aura/MLS show

that exceptional dehydration occurred during the 2015/2016

Arctic winter (Manney and Lawrence, 2016).

Figure 5 shows the EMAC H2O distribution at selected

dates during the 2015/2016 winter at 52 hPa. On 24 Decem-

ber 2015, the H2O distribution shows the usual background

H2O mixing ratios in the Arctic region. From January on-

wards, mixing ratios drop and an area with mixing ratios be-

low 5 ppmv is found north of Scandinavia. Mixing ratios de-

crease further throughout January and the area of dehydration

increases. From February onwards, H2O mixing ratios start

to increase again but still remain lower than the pre-winter

values.

Dehydration from the EMAC simulation is derived by us-

ing total “stratospheric” hydrogen (2CH4 + H2O) as a sub-

stitute for a passive H2O tracer (e.g. Rinsland et al., 1996;

Schiller et al., 1996). Molecular hydrogen (H2) is nearly con-

stant in the lower and middle stratosphere and can therefore

be neglected in the calculation of total hydrogen. The quan-

tity 2CH4 + H2O is generally constant in the stratosphere.

However, slight deviations from this quasi-conserved quan-

tity can be found at high latitudes during winter where trans-

port of mesospheric air rich in molecular hydrogen and poor

Atmos. Chem. Phys., 17, 12893–12910, 2017 www.atmos-chem-phys.net/17/12893/2017/
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Figure 5. Distribution of H2O as simulated with EMAC T106L90 at 52 hPa on certain dates between 24 December 2015 and 12 Febru-

ary 2016.

Figure 6. Redistribution of H2O (1H2O) as simulated with

EMAC T106L90 at northern high latitudes (70–90◦ N) as a function

of pressure during the 2015/2016 Arctic winter (difference of total

hydrogen 2CH4 + H2O at time t and total hydrogen at time t0 = 1

December (1H2O = (2CH4 + H2O)(t) − (2CH4 + H2O)(t0)).

in water vapour and methane is brought into the upper strato-

sphere (e.g. LeTexier et al., 1988; Engel et al., 1996).

The change in H2O (1H2O) is calculated by taking the

difference of total hydrogen at time t and total hydrogen

at time t0 (1H2O = (2CH4 + H2O)(t) − (2CH4 + H2O)(t0),

with t0 = 1 December). The exceptional dehydration during

the 2015/2016 Arctic winter can be seen in the temporal evo-

lution of 1H2O as a function of pressure averaged over 70–

90◦ N (Fig. 6). The decrease of 1H2O throughout January

and February shows a H2O removal of around 1 ppmv ex-

tending between 60 and 30 hPa. Sequestration into PSC par-

ticles reached its maximum in mid-January (1H2O of up

to 2 ppmv). Below the depleted areas, re-hydration (up to

0.6 ppmv) due to the evaporation of the sedimenting PSC

particles at higher pressure levels (lower altitudes) is clearly

visible. Thus, the amount of H2O that has been permanently

removed (dehydrated) is between 0.6 and 1 ppmv.

3.4 Ozone loss

The 2015/2016 Arctic winter appeared to have the greatest

potential seen yet for record Arctic ozone loss (Manney and

Lawrence, 2016). Temperatures in the Arctic lower strato-

sphere were at record lows from December 2015 to early

February 2016 (Manney and Lawrence, 2016; Matthias et al.,

www.atmos-chem-phys.net/17/12893/2017/ Atmos. Chem. Phys., 17, 12893–12910, 2017
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Figure 7. Ozone loss (1O3) as simulated with EMAC T106L90

(difference of O3 and the passive tracer O∗
3 (1O3 = O3 − O∗

3), av-

eraged over 70–90◦ N) as a function of time and pressure for the

2015/2016 Arctic winter.

2016). As was shown by Manney and Lawrence (2016),

ozone destruction began earlier and proceeded more rapidly

than in 2010/2011, the winter that so far has been the one

with the strongest observed ozone loss in the Arctic (Man-

ney et al., 2011). The reason that lower-stratospheric ozone

loss did not reach the extent of that in spring 2011 was pri-

marily due to a major final stratospheric warming in early

March 2016 that led to a vortex split and a full breakdown of

the vortex by early April (Manney and Lawrence, 2016).

In the following, the EMAC simulation is used to investi-

gate ozone depletion during the 2015/2016 Arctic winter and

compare the results with previous Arctic winters. Ozone de-

pletion (1O3) from the model simulation is determined by

the difference between the modelled ozone O3 and a passive

ozone tracer O∗
3 (1O3 = O3 − O∗

3). The passive ozone tracer

was initialised on 1 December 2015 according to the ozone

distribution on that day and was then advected and mixed as

all other chemical species but did not undergo any chemical

changes. The simulated ozone depletion (averaged over 70–

90◦ N) is shown in Fig. 7. From mid-January onwards, ozone

depletion is visible in the EMAC simulation and a maximum

depletion of about 2.1 ppmv is reached at about 30 hPa in

mid-March.

The simulated total column ozone loss time series from

1 December to 31 March averaged over 70–90◦ N is shown

in Fig. 8. Changes in the total column become visible from

the end of January onwards. The absolute maximum in total

column ozone loss of about 117 DU is reached on 7 March.

Note that, rather than employing a vortex-following coordi-

nate, e.g. equivalent latitude, we have not chosen to perform

our analysis on a fixed geographic latitude band. Such an ap-

proach is justified here because the use of a passive ozone

tracer allows dynamical and chemical processes to be sepa-

rated, thus facilitating the quantification of chemical ozone

loss. On equivalent latitudes, the same amount of ozone loss

Figure 8. Total column ozone loss (1O3) from EMAC T106L90

(70–90◦ N) for the 2015/2016 Arctic winter. Total column loss has

been derived from the difference between the active tracer O3 and

the passive tracer O∗
3 (1O3 = O3 − O∗

3).

in terms of mixing ratio is derived, while in terms of column

loss ozone loss it is 10 % less (103 DU).

3.5 Comparison to recent Arctic winters

The EMAC T42L90 simulation is used to compare the

2015/2016 Arctic winter to previous Arctic winters. The re-

sults from both simulations, T42L90 and T106L90, are quite

similar as can be seen from the time series comparison shown

in Sect. 4 where the EMAC simulations are compared to

Aura/MLS observations. The agreement with the Aura/MLS

measurements is slightly better for the T106L90 simulation.

Although considerable ozone loss occurred during the

2015/2016 Arctic winter, ozone loss was not as strong as

in 2010/2011 as can be seen from Figs. 9 and 10. In Fig. 9, the

March mean O3 column is shown for the years 2010 to 2016.

Very low O3 column values are found in March 2011. Col-

umn values reach 250 DU. In March 2016, however, the O3

column remains quite high.

Figure 10 shows the Arctic mean column O3 time series

(averaged over 60 to 90◦ N) from 1 December to 30 April for

the four Arctic winters (2009/2010, 2010/2011, 2013/2014

and 2015/2016). The EMAC Arctic mean column O3 shows

considerable interannual variability. In contrast to the other

Arctic winters, very low O3 is found in 2010/2011. The ex-

treme low O3 column that we find in the EMAC simulation

for the 2010/2011 winter is in agreement with the results

from Strahan et al. (2013) and Manney et al. (2011) using

observations and model simulations. In 2015/2016, the O3

column was comparably low in early winter, but from Febru-

ary onwards the O3 column started to increase significantly

due to the disturbances of the Arctic stratosphere by sudden

stratospheric warmings. In fact, winters with above-average

stratospheric wave activity have a warm, disturbed vortex,

while winters with weak wave driving have a cold, long-

lasting vortex, with well-known impacts on Arctic March

Atmos. Chem. Phys., 17, 12893–12910, 2017 www.atmos-chem-phys.net/17/12893/2017/
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Figure 9. Total ozone column (March monthly mean) from EMAC for the years 2010–2016 (results from the EMAC T42L90 simulation are

shown here).

temperatures and O3 column (Strahan et al., 2013 and ref-

erences therein). Manney and Lawrence (2016) found from

MLS observations that ozone continued to decrease in the

vortex at a rate slightly faster than that in 2011 until the be-

ginning of March 2016. However, around mid-March, ozone

increased for the rest of the winter, so that the ozone val-

ues always remained higher than in 2011. This is also seen

in the EMAC simulation. Therefore, our model simulations

are in agreement with the results by Manney and Lawrence

(2016) who showed that in the 2015/2016 Arctic winter the

stratosphere appeared to have the greatest potential seen yet

for a massive Arctic ozone loss due to record low temper-

atures but was disrupted by the final sudden warming in

early March. In other words, massive Arctic ozone loss likely

would have occurred in the 2015/2016 Arctic winter if the

vortex had remained stable and temperatures remained low

into late March.

On the other hand, although ozone loss was not stronger

than in 2010/2011, denitrification and dehydration were the

strongest observed so far (Manney and Lawrence, 2016).

From the EMAC simulation, the same result as from the

observations is derived. Figure 11 shows the time series of

HNO3 and H2O for the same four Arctic winters as shown in

Fig. 10. At 48 hPa, several ppbv lower HNO3 mixing ratios

than in previous cold Arctic winters are found from Decem-

ber to February. Pre-winter HNO3 mixing ratios were around

11 ppbv and drop to 4 ppbv in mid-January. How much lower

the H2O mixing ratios drop due to the dehydration during the

2015/2016 Arctic winter compared to other Arctic winters

can be seen in the H2O time series at 48 hPa (Fig. 11b). In

early December, H2O mixing ratios are as high as 5.8 ppmv

www.atmos-chem-phys.net/17/12893/2017/ Atmos. Chem. Phys., 17, 12893–12910, 2017
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Figure 10. Ozone (O3) column time series for the 2009/2010 (blue),

2010/2011 (green), 2013/2014 (red) and 2015/2016 (magenta) Arc-

tic winters, averaged over 60–90◦ N (results from the EMAC

T42L90 simulation are shown here).

and decrease to 5.2 ppmv but decrease for a short period to-

wards the end of January to even lower values (4.7 ppmv).

From the end of January, the H2O mixing ratios increase

slowly but still remain lower than the pre-winter values. The

H2O mixing ratios are in addition ∼ 1–1.5 ppmv lower in

January and February than in previous cold Arctic winters.

4 Comparison to observations

In this study, we compare the EMAC simulations for the

2015/2016 Arctic winter to Aura/MLS observations. In an-

other study (Khosrawi et al., 2017), the EMAC simulations

of HNO3, temperature and PSC volume density were com-

pared for the 2009/2010 and 2010/2011 Arctic winters with

satellite observations (Envisat/MIPAS and Aura/MLS). Here,

we consider in addition to temperature and HNO3 other trace

gases such as O3, ClO (Sect. 4.1) and H2O, and compare

the simulations to Aura/MLS observations. Additionally, the

EMAC simulations are compared to remote sensing obser-

vations from GLORIA performed during the POLSTRACC

measurement campaign (Sect. 4.2). For the comparisons to

Aura/MLS, the EMAC SORBIT output is used (Jöckel et al.,

2010), while for the comparison to GLORIA the EMAC

global field output is interpolated to the GLORIA measure-

ment geolocations.

4.1 Comparison to Aura/MLS

Figure 12 shows a comparison of the temperature, HNO3

and O3 distribution measured by Aura/MLS with the ones

simulated with EMAC at about 50 hPa on 15 January 2016.

For temperature, as well as for HNO3 and O3, the simula-

tions are in general agreement with the Aura/MLS obser-

vations. Nevertheless, some differences are found between

model simulations and observations. Temperatures as sim-

ulated with EMAC (nudged towards ECMWF operational

Figure 11. Tracer time series of HNO3 (a) and H2O (b) for

the 2009/2010 (blue), 2010/2011 (green), 2013/2014 (red) and

2015/2016 (magenta) Arctic winters at 48 hPa, averaged over 70–

90◦ N (results from the T42L90 simulation are shown here).

analysis) tend to be slightly higher than those measured out-

side the polar vortex. The trace gas distributions of HNO3

and O3 simulated with EMAC show more fine-scale struc-

tures, which may be related to the higher horizontal resolu-

tion (1.125◦ × 1.125◦ ∼ 125 km × 125 km or less depending

on latitude) of the EMAC simulation compared to Aura/MLS

(measurements every 1.5◦ ∼ 165 km and resolution of 200–

500 km along track). Generally, the simulated HNO3 mix-

ing ratios are slightly lower than the ones measured with

Aura/MLS while the simulated O3 mixing ratios are quite

similar to the observed O3.

The temporal development of ClO, HNO3 and O3 av-

eraged over 70–90◦ N during the 2015/2016 Arctic win-

ter as a function of pressure as simulated with EMAC

and observed by Aura/MLS is shown in Fig. 13. Here,

the EMAC SORBIT output is used (Jöckel et al., 2010),

where EMAC is sampled along the Sun-synchronous orbit

of Aura/MLS. The use of the SORBIT output improves the

agreement between observations and simulations of trace

gases with a diurnal cycle, e.g. ClO, significantly but has

a rather minor impact on the comparison between observa-

tions and simulations for other trace gases, e.g. O3. Gen-

erally, the temporal evolution of the trace gas distributions

is realistically reproduced in the EMAC simulation. Nev-

ertheless, there are some differences found between mea-

surement and model simulations. In the observations, in-

creased ClO mixing ratios are already found in December,

Atmos. Chem. Phys., 17, 12893–12910, 2017 www.atmos-chem-phys.net/17/12893/2017/
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Figure 12. Temperature, HNO3 and O3 distribution measured by Aura/MLS (a, c, e) and simulated by EMAC T106L90 (b, d, f) at ∼ 50 hPa

on 15 January 2016.

whereas in the model simulation the increase of ClO oc-

curs somewhat later. However, the enhancement of ClOx

(ClOx = Cl + ClO + HOCl + OClO + 2 · Cl2 + 2 · Cl2O2) in

the EMAC simulation is found at the same time as in the

Aura/MLS ClO observation, thus indicating that the later in-

crease in ClO is not necessarily caused by the activation of

chlorine being too late in the model simulation but could

also be caused by the partitioning between the active chlo-

rine species. In EMAC, the photolysis rates are calculated by

the submodel JVAL (Sect. 2.1). JVAL is part of the standard

configuration of EMAC that was also used in the EMAC sim-

ulations contributing to the Chemistry-Climate Model Initia-

tive (CCMI; Jöckel et al., 2016). An intercomparison of sev-

eral photolysis schemes has shown that JVAL provides lower

photolysis rates at very high solar zenith angles (> 90◦) for,

e.g. Cl2O2, than other schemes. Thus, the partitioning of

chlorine-containing species may be shifted for high solar

zenith angles and thus could be the cause for the delay in the

activation of ClO in the model simulation. However, to en-

tirely rule out the cause for this difference, further studies are

necessary which are beyond the scope of this study. The ClO

mixing ratios are maximum in February in both the obser-

vations and model simulations. However, at the maximum,

higher mixing ratios are found, and these extend over a larger

vertical range in the EMAC simulation than in Aura/MLS ob-

servations.

The temporal evolution of the HNO3 distribution as a func-

tion of pressure shows that the model simulation captures

the general features well. In early December, HNO3 mix-

ing ratios are slightly underestimated by EMAC (∼ 1 ppbv).

Gas phase removal of HNO3 due to uptake in PSCs is more

strongly simulated at higher pressure levels (December to

www.atmos-chem-phys.net/17/12893/2017/ Atmos. Chem. Phys., 17, 12893–12910, 2017
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Figure 13. Temporal evolution of daily mean ClO, HNO3 and O3 at northern high latitudes (averaged over 70–90◦ N) as a function of

pressure as observed by Aura/MLS (a, c, e) and simulated by EMAC T106L90 (b, d, f) for the 2015/2016 Arctic winter (EMAC SORBIT

output used).

January at around 100 hPa) while underestimated at lower

pressure levels (January to February at around 50 hPa). PSCs

composed of NAT form in EMAC as soon as temperatures

drop below TNAT − 3 K, which often results in a too-early

formation of NAT particles. Among other things, this has

also an impact on the denitrification, as was found in an-

other study comparing EMAC simulations for the 2009/2010

and 2010/2011 Arctic winters with Envisat/MIPAS and

Aura/MLS observations (Khosrawi et al., 2017). Because

NAT is calculated before STS in the model, the NAT forma-

tion occurs at the expense of STS since the available HNO3

is first consumed by the NAT clouds (e.g. Wohltmann et al.,

2013). Since in reality STS and NAT clouds are often ob-

served at the same time (e.g. Pitts et al., 2011; Peter and

Grooß, 2012), this could be one explanation for the devia-

tions in the HNO3 distribution.

The temporal evolution of EMAC O3 (Fig. 13f) is quite

similar to that observed by Aura/MLS (Fig. 13e), especially

in the lower stratosphere. In the upper stratosphere, more O3

is brought down, leading to higher O3 in the EMAC simula-

tion above 20 hPa in March compared to Aura/MLS.

Figure 14 shows the time series of HNO3 and O3 at 50 hPa

for Aura/MLS and the EMAC T42 and T106 simulation. In

the EMAC simulation, the HNO3 is slightly underestimated

in the beginning of December (by about 1 ppbv). Larger dif-

ferences at 50 hPa are found in the time period of denitri-

fication (from the end of December to the end of January).

At this time, the EMAC simulations underestimate denitrifi-

cation at 50 hPa by about 2–3 ppbv. The simulated O3 is in

good agreement with Aura/MLS measurements during De-

cember and January. From February onwards, the simulated

O3 is up to 0.25 ppmv higher than the observed O3. For both

species, the T106L90 simulation agrees slightly better with

the Aura/MLS observations.
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Figure 14. Time series of HNO3 (a) and O3 (b) from Aura/MLS

measurements (grey) and from the EMAC T42L90 (blue) and

EMAC T106L90 (green) at ∼ 50 hPa averaged over 70–90◦ N

(EMAC SORBIT output used).

4.2 Comparison to GLORIA

The EMAC simulations were performed in support of the

POLSTRACC campaign. This allows as to evaluate the

model performance in the lower stratosphere by comparison

to high resolved measurements performed aboard HALO.

Here, we show a comparison of EMAC HNO3 and O3 to the

remote sensing instrument GLORIA. The comparison shown

here is for the POLSTRACC flight 21 on 18 March 2016.

EMAC output has been taken along the times and locations

of GLORIA measurements (Fig. 15). The GLORIA measure-

ments in chemistry mode of flight 21 used in this comparison

were performed over Scandinavia. By mid-March, the polar

vortex had been displaced off the pole and split. The colder

offspring vortex was centred over northern Russia, and dur-

ing flight 21 air masses at the border of this offspring vortex

have been probed.

EMAC HNO3 and O3 compares generally well to

GLORIA in terms of the distribution and mixing ratios. How-

ever, at 12–14 km, the area where the polar vortex has been

probed, O3 mixing ratios from EMAC are slightly lower than

the ones observed by GLORIA. The same holds for HNO3,

but differences between EMAC and GLORIA are larger. The

underestimation of polar vortex O3 in the EMAC simulation

could be either caused by a too-weak downward transport or

a too-strong ozone destruction in the model. The former rea-

son, however, is more likely, since a well-known feature in

EMAC is that the downward transport is underestimated in

the lower parts of the polar vortices (Brühl et al., 2007), de-

spite the model vorticity and divergence fields being nudged

towards ECMWF analysis. Further, ozone loss in EMAC is

rather underestimated than overestimated as was found in the

evaluation study by Khosrawi et al. (2009).

Another difference between EMAC and GLORIA is that

less fine-scale structure is simulated with EMAC than ob-

served by GLORIA, which is probably due to the rather

coarse horizontal resolution of EMAC (T106 correspond-

ing to 1.125◦ × 1.125◦) compared to GLORIA. Nevertheless,

these results show that EMAC simulations can be used for

comparisons to aircraft measurements. In the future, sim-

ulations with EMAC with an even higher horizontal reso-

lution (T255) are anticipated, which are expected to result

in even better agreement with observations derived aboard

the aircraft. However, it should be kept in mind that a good

agreement between model simulations and observations can

only be obtained if the model simulations are nudged towards

meteorological analysis. It can be expected that compari-

son with free-running model simulations would show larger

differences. Further, the results are also limited by the ac-

curacy of the meteorological analysis; e.g. resolving small-

scale temperature fluctuations and mountain waves will still

be problematic even when a T255 resolution is used.

5 Conclusions

In this study, an overview of the chemistry and dynamics

of the 2015/2016 Arctic winter as simulated with EMAC

was given. The EMAC simulations were performed with a

T106L90 resolution and nudged toward ECMWF operational

analysis. Chemical–dynamical processes such as denitrifica-

tion, dehydration and ozone loss were investigated, and com-

parisons to satellite observations by the Aura/MLS as well as

to airborne measurements with GLORIA performed aboard

HALO were shown.

From the EMAC simulation, we derive a maximum polar

stratospheric O3 loss of ∼ 2 ppmv or 117 DU in terms of col-

umn in mid-March (averaged over 70–90◦ N). Note that we

did not use equivalent latitudes here since separation between

chemical and dynamical processes is achieved via the passive

O3 tracer. On equivalent latitudes, the same amount of ozone

loss in terms of mixing ratio is derived, while in terms of

column loss ozone loss it is 10 % less (103 DU). The strato-

sphere was denitrified by about 4–8 ppbv HNO3 and dehy-

drated by about 0.6–1 ppmv H2O from the middle to the end

of February. In agreement with the analysis of Aura/MLS

observations by Manney and Lawrence (2016), we find that

ozone loss was quite strong in 2015/2016 but not as strong as

in 2010/2011. Denitrification and dehydration on the other

hand were so far the strongest observed in the Arctic strato-

sphere.

Comparison of trace gas distributions of HNO3, ClO

and O3 shows that the EMAC simulations nudged toward
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Figure 15. GLORIA HNO3 and O3 observations during flight 21 on 18 March 2016 (a, c) and EMAC T106L90 output along the flight

track (b, d).

ECMWF operational analysis generally reproduce well the

Aura/MLS observations during the 2015/2016 Arctic win-

ter. However, there are some differences between the EMAC

simulations and observations which need sensitivity stud-

ies in the future to improve the agreement between the

model simulations and observations. In the EMAC simu-

lation, HNO3 is slightly underestimated (by about 1 ppbv).

Larger differences are found in the area of denitrification

which could be related to the partitioning between STS and

NAT in the model. The observed increase in ClO at the be-

ginning of the winter is simulated later with EMAC. Since

the enhancement in modelled ClOx is found roughly at the

same time as the observed increase in ClO, the disparity in

the behaviour of modelled and measured ClO may arise from

chlorine activation being delayed in the model due to inac-

curacies in the partitioning between chlorine species at high

solar zenith angles.

The comparison to GLORIA measurements shows that

EMAC simulations nudged toward ECMWF operational

analysis can reproduce the observations. Further, this com-

parison shows that, though EMAC is a climate model, EMAC

simulations can be applied in support of aircraft campaigns

and these simulations provide a valuable data set not only for

flight analysis but also for measurement–model intercompar-

isons.
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