000841592 001__ 841592
000841592 005__ 20240619091235.0
000841592 0247_ $$2doi$$a10.1021/acsami.7b08481
000841592 0247_ $$2ISSN$$a1944-8244
000841592 0247_ $$2ISSN$$a1944-8252
000841592 0247_ $$2pmid$$apmid:28783310
000841592 0247_ $$2WOS$$aWOS:000409395500122
000841592 0247_ $$2altmetric$$aaltmetric:23510597
000841592 037__ $$aFZJ-2017-08630
000841592 082__ $$a540
000841592 1001_ $$0P:(DE-Juel1)165834$$aMarkov, Aleksandr$$b0$$eCorresponding author
000841592 245__ $$aControlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers
000841592 260__ $$aWashington, DC$$bSoc.$$c2017
000841592 3367_ $$2DRIVER$$aarticle
000841592 3367_ $$2DataCite$$aOutput Types/Journal article
000841592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515507944_19491
000841592 3367_ $$2BibTeX$$aARTICLE
000841592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841592 3367_ $$00$$2EndNote$$aJournal Article
000841592 520__ $$aModifying the surfaces of oxides using self-assembled monolayers offers an exciting possibility to tailor their surface properties for various applications ranging from organic electronics to bioelectronics applications. The simultaneous use of different molecules in particular can extend this approach because the surface properties can be tuned via the ratio of the chosen molecules. This requires the composition and quality of the monolayers to be controlled on an organic level, that is, on the nanoscale. In this paper, we present a method of modifying the surface and surface properties of silicon oxide by growing self-assembled monolayers comprising various compositions of two different molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane, by means of in situ controlled gas-phase deposition. The properties of the resulting mixed molecular monolayers (e.g., effective thickness, hydrophobicity, and surface potential) exhibit a perfect linear dependence on the composition of the molecular layer. Finally, coating the mixed layer with poly(l-lysine) proves that the density of proteins can be controlled by the composition as well. This indicates that the method might be an ideal way to optimize inorganic surfaces for bioelectronics applications.
000841592 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000841592 588__ $$aDataset connected to CrossRef
000841592 7001_ $$0P:(DE-Juel1)165172$$aWolf, Nikolaus$$b1
000841592 7001_ $$0P:(DE-Juel1)171357$$aYuan, Xiaobo$$b2
000841592 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3
000841592 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b4
000841592 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5
000841592 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b6
000841592 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b08481$$gVol. 9, no. 34, p. 29265 - 29272$$n34$$p29265 - 29272$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.pdf$$yRestricted
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.gif?subformat=icon$$xicon$$yRestricted
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841592 8564_ $$uhttps://juser.fz-juelich.de/record/841592/files/acsami.7b08481.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841592 909CO $$ooai:juser.fz-juelich.de:841592$$pVDB
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165834$$aForschungszentrum Jülich$$b0$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165172$$aForschungszentrum Jülich$$b1$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171357$$aForschungszentrum Jülich$$b2$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b4$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000841592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b6$$kFZJ
000841592 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000841592 9141_ $$y2017
000841592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841592 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000841592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841592 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841592 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841592 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000841592 920__ $$lyes
000841592 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000841592 980__ $$ajournal
000841592 980__ $$aVDB
000841592 980__ $$aI:(DE-Juel1)ICS-8-20110106
000841592 980__ $$aUNRESTRICTED
000841592 981__ $$aI:(DE-Juel1)IBI-3-20200312