001     841592
005     20240619091235.0
024 7 _ |a 10.1021/acsami.7b08481
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:28783310
|2 pmid
024 7 _ |a WOS:000409395500122
|2 WOS
024 7 _ |a altmetric:23510597
|2 altmetric
037 _ _ |a FZJ-2017-08630
082 _ _ |a 540
100 1 _ |a Markov, Aleksandr
|0 P:(DE-Juel1)165834
|b 0
|e Corresponding author
245 _ _ |a Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515507944_19491
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Modifying the surfaces of oxides using self-assembled monolayers offers an exciting possibility to tailor their surface properties for various applications ranging from organic electronics to bioelectronics applications. The simultaneous use of different molecules in particular can extend this approach because the surface properties can be tuned via the ratio of the chosen molecules. This requires the composition and quality of the monolayers to be controlled on an organic level, that is, on the nanoscale. In this paper, we present a method of modifying the surface and surface properties of silicon oxide by growing self-assembled monolayers comprising various compositions of two different molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane, by means of in situ controlled gas-phase deposition. The properties of the resulting mixed molecular monolayers (e.g., effective thickness, hydrophobicity, and surface potential) exhibit a perfect linear dependence on the composition of the molecular layer. Finally, coating the mixed layer with poly(l-lysine) proves that the density of proteins can be controlled by the composition as well. This indicates that the method might be an ideal way to optimize inorganic surfaces for bioelectronics applications.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wolf, Nikolaus
|0 P:(DE-Juel1)165172
|b 1
700 1 _ |a Yuan, Xiaobo
|0 P:(DE-Juel1)171357
|b 2
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 3
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 4
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
700 1 _ |a Wördenweber, Roger
|0 P:(DE-Juel1)128749
|b 6
773 _ _ |a 10.1021/acsami.7b08481
|g Vol. 9, no. 34, p. 29265 - 29272
|0 PERI:(DE-600)2467494-1
|n 34
|p 29265 - 29272
|t ACS applied materials & interfaces
|v 9
|y 2017
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841592/files/acsami.7b08481.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841592
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128749
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21