000841651 001__ 841651
000841651 005__ 20240712113130.0
000841651 0247_ $$2doi$$a10.1039/C6CP04802A
000841651 0247_ $$2ISSN$$a1463-9076
000841651 0247_ $$2ISSN$$a1463-9084
000841651 0247_ $$2pmid$$apmid:28361150
000841651 0247_ $$2WOS$$aWOS:000399383100028
000841651 037__ $$aFZJ-2017-08681
000841651 082__ $$a540
000841651 1001_ $$00000-0002-8260-4793$$aKoettgen, Julius$$b0$$eCorresponding author
000841651 245__ $$aAb initio calculation of the attempt frequency of oxygen diffusion in pure and samarium doped ceria
000841651 260__ $$aCambridge$$bRSC Publ.$$c2017
000841651 3367_ $$2DRIVER$$aarticle
000841651 3367_ $$2DataCite$$aOutput Types/Journal article
000841651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518772775_14934
000841651 3367_ $$2BibTeX$$aARTICLE
000841651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841651 3367_ $$00$$2EndNote$$aJournal Article
000841651 520__ $$aThe rate of oxygen ion jumps in a solid oxide depends not only on the activation energy but also on the pre-exponential factor of diffusion. In order to allow a fully ab initio prediction of the oxygen ion conductivity in pure and samarium doped ceria, we calculated the attempt frequency for an oxygen ion jump from first principles combining DFT+U, the NEB method, phonon calculations and the transition state theory. Different definitions of the jump attempt frequency are presented. The equivalence of the Eyring and the Vineyard method is shown without restriction to the Gamma point. Convergence checks of the phonon mesh reveal that the common reduction to the Gamma point is not sufficient to calculate the attempt frequency. Calculations of Sm doped ceria revealed an increase of the prefactor. The attempt frequency for the constant pressure case in quasi-harmonic approximation is larger than the attempt frequency at constant volume in harmonic approximation. The calculated electronic energies, enthalpies and entropies of migration are in agreement with the experimental diffusion coefficients and activation energies.
000841651 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000841651 536__ $$0G:(DE-Juel1)jhpc27_20151101$$aAttempt frequency of oxygen ion jumps in doped ceria (jhpc27_20151101)$$cjhpc27_20151101$$fAttempt frequency of oxygen ion jumps in doped ceria$$x1
000841651 536__ $$0G:(DE-Juel1)jara0035_20141101$$aAb-initio study of structure, conductivity and thermodynamics of doped and non-stoichiometric ceria (jara0035_20141101)$$cjara0035_20141101$$fAb-initio study of structure, conductivity and thermodynamics of doped and non-stoichiometric ceria$$x2
000841651 536__ $$0G:(DE-Juel1)jara0071_20131101$$aDefect formation and migration in zirconia from first principles (jara0071_20131101)$$cjara0071_20131101$$fDefect formation and migration in zirconia from first principles$$x3
000841651 588__ $$aDataset connected to CrossRef
000841651 7001_ $$0P:(DE-HGF)0$$aZacherle, Tobias$$b1
000841651 7001_ $$0P:(DE-Juel1)167130$$aGrieshammer, Steffen Paul$$b2$$ufzj
000841651 7001_ $$0P:(DE-Juel1)167535$$aMartin, Manfred$$b3$$eCorresponding author
000841651 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C6CP04802A$$gVol. 19, no. 15, p. 9957 - 9973$$n15$$p9957 - 9973$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.pdf$$yRestricted
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.gif?subformat=icon$$xicon$$yRestricted
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841651 8564_ $$uhttps://juser.fz-juelich.de/record/841651/files/c6cp04802a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841651 909CO $$ooai:juser.fz-juelich.de:841651$$pVDB
000841651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167130$$aForschungszentrum Jülich$$b2$$kFZJ
000841651 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000841651 9141_ $$y2017
000841651 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000841651 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000841651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841651 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841651 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841651 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841651 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841651 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000841651 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000841651 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000841651 980__ $$ajournal
000841651 980__ $$aVDB
000841651 980__ $$aI:(DE-Juel1)IEK-12-20141217
000841651 980__ $$aI:(DE-82)080011_20140620
000841651 980__ $$aI:(DE-82)080012_20140620
000841651 980__ $$aUNRESTRICTED
000841651 981__ $$aI:(DE-Juel1)IMD-4-20141217