000841679 001__ 841679
000841679 005__ 20240711092308.0
000841679 0247_ $$2doi$$a10.1021/acs.energyfuels.7b02930
000841679 0247_ $$2ISSN$$a0887-0624
000841679 0247_ $$2ISSN$$a1520-5029
000841679 0247_ $$2WOS$$aWOS:000418783800099
000841679 037__ $$aFZJ-2018-00002
000841679 082__ $$a620
000841679 1001_ $$0P:(DE-HGF)0$$aJiao, Facun$$b0
000841679 245__ $$aVaporization Behavior of Cs, K, and Na in Cs-Containing Incineration Bottom Ash during Thermal Treatment with CaCl 2 and CaO
000841679 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000841679 3367_ $$2DRIVER$$aarticle
000841679 3367_ $$2DataCite$$aOutput Types/Journal article
000841679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514901227_30404
000841679 3367_ $$2BibTeX$$aARTICLE
000841679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841679 3367_ $$00$$2EndNote$$aJournal Article
000841679 520__ $$aThe vaporization behaviors of the alkali metals Cs, K, and Na were investigated at 900, 1000, and 1100 °C in a lab-scale electrical-heating horizontal furnace using a Cs-doped ash with the addition of CaCl2 and/or CaO. Knudsen effusion mass spectrometry was employed to measure the vaporization of the alkali metals in the Cs-doped ash with CaO under a high vacuum. Molecular beam mass spectrometry was used online to measure their vaporization from the Cs-doped ash with either CaCl2 or a mixture of CaCl2 and CaO. The addition of CaO caused some vaporization of these elements, which was probably due to the replacement of the Cs+, K+, and Na+ cations in aluminosilicates with Ca2+ cations during the thermal treatment. The vaporization propensity of the three elements followed the sequence of Cs > K > Na. The vaporization of Cs, K, and Na were observed during a thermal treatment with CaCl2. An increase in the content of CaCl2 or the reaction temperature facilitated the vaporization of Cs, K, and Na. O2 and H2O in the reactant gas showed an inhibiting effect on the vaporization of Cs, K, and Na through accelerating the release of Cl from the decomposition of CaCl2. A synergistic effect was observed between the addition of CaCl2 and CaO on the vaporization of Cs, K, and Na because they delayed the release of Cl, which provided a longer contact time between the three metals and the gaseous Cl. Moreover, when the mixture of CaCl2 and CaO was used, the CaO produced unstable Cs, K, and Na that readily reacted with gaseous Cl, enhancing the vaporization of the alkali metals during thermal treatment. At 1100 °C, 93% of the Cs was vaporized from the Cs-doped ash with 5% CaCl2 and 20% CaO while the vaporization ratio of K and Na was 69% and 63%, respectively.
000841679 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000841679 588__ $$aDataset connected to CrossRef
000841679 7001_ $$0P:(DE-HGF)0$$aKinoshita, Norikazu$$b1
000841679 7001_ $$0P:(DE-HGF)0$$aKawaguchi, Masato$$b2
000841679 7001_ $$0P:(DE-HGF)0$$aAsada, Motoyuki$$b3
000841679 7001_ $$0P:(DE-HGF)0$$aHonda, Maki$$b4
000841679 7001_ $$0P:(DE-HGF)0$$aSueki, Keisuke$$b5
000841679 7001_ $$00000-0002-3523-9666$$aNinomiya, Yoshihiko$$b6$$eCorresponding author
000841679 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry$$b7
000841679 7001_ $$00000-0002-6116-1604$$aBläsing, Marc$$b8
000841679 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b9
000841679 773__ $$0PERI:(DE-600)1483539-3$$a10.1021/acs.energyfuels.7b02930$$gVol. 31, no. 12, p. 14045 - 14052$$n12$$p14045 - 14052$$tEnergy & fuels$$v31$$x1520-5029$$y2017
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.pdf$$yRestricted
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.gif?subformat=icon$$xicon$$yRestricted
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841679 8564_ $$uhttps://juser.fz-juelich.de/record/841679/files/acs.energyfuels.7b02930.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841679 909CO $$ooai:juser.fz-juelich.de:841679$$pVDB
000841679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b7$$kFZJ
000841679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b9$$kFZJ
000841679 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000841679 9141_ $$y2017
000841679 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG FUEL : 2015
000841679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841679 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841679 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841679 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841679 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841679 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841679 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000841679 980__ $$ajournal
000841679 980__ $$aVDB
000841679 980__ $$aI:(DE-Juel1)IEK-2-20101013
000841679 980__ $$aUNRESTRICTED
000841679 981__ $$aI:(DE-Juel1)IMD-1-20101013