001     841680
005     20240711092308.0
024 7 _ |a 10.1016/j.fuproc.2017.09.002
|2 doi
024 7 _ |a 0378-3820
|2 ISSN
024 7 _ |a 1873-7188
|2 ISSN
024 7 _ |a WOS:000425570400037
|2 WOS
037 _ _ |a FZJ-2018-00003
082 _ _ |a 660
100 1 _ |a Wu, Guixuan
|0 P:(DE-Juel1)145147
|b 0
|e Corresponding author
245 _ _ |a Viscosity Model for Oxide Melts Relevant to Fuel Slags. Part 3: The Iron Oxide Containing Low Order Systems in the System SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Science Direct
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1514901346_30399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The viscosity model recently developed for the fully liquid system SiO2–Al2O3–CaO–MgO–Na2O–K2O is further extended to describe the viscosity of the iron oxide containing low order systems in the Newtonian range. The different structural roles of Fe2 + and Fe3 + to the viscosity are captured by the associate species. Using the monomeric associate species in combination with some specific larger structrual units, the model is capable of describing the viscosity of the melts FeO, FeO–SiO2, FeO–Al2O3, Fe2O3–CaO, Fe2O3–MgO, Fe2O3–Na2O, and Fe2O3–K2O over the whole range of compositions as well as a wide range of temperatures and oxygen partial pressures using only one set of model parameters. A new mechanism is proposed to describe the local viscosity maximum around the fayalite composition in the FeO–SiO2 melt. The model shows that the presence of the local viscosity maximum is dependent on the temperature and oxygen partial pressure. Moreover, the viscosity maximum caused by Al3 +- or Fe3 +-induced charge compensation is presented and a good agreement between the calculated viscosities and experimental data is demonstrated.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Seebold, Sören
|0 P:(DE-Juel1)161590
|b 1
700 1 _ |a Yazhenskikh, Elena
|0 P:(DE-Juel1)129813
|b 2
700 1 _ |a Hack, Klaus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 4
773 _ _ |a 10.1016/j.fuproc.2017.09.002
|g Vol. 171, p. 339 - 349
|0 PERI:(DE-600)1483666-x
|p 339 - 349
|t Fuel processing technology
|v 171
|y 2018
|x 0378-3820
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841680/files/1-s2.0-S0378382017312973-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841680
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145147
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161590
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUEL PROCESS TECHNOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21