000841706 001__ 841706
000841706 005__ 20240711101552.0
000841706 0247_ $$2doi$$a10.1039/C8SE00008E
000841706 0247_ $$2WOS$$aWOS:000436519000011
000841706 037__ $$aFZJ-2018-00014
000841706 082__ $$a660
000841706 1001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b0$$eCorresponding author
000841706 245__ $$aAn Option for Stranded Renewables: Electrolytic-Hydrogen in Future Energy Systems
000841706 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018
000841706 3367_ $$2DRIVER$$aarticle
000841706 3367_ $$2DataCite$$aOutput Types/Journal article
000841706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547481135_23129
000841706 3367_ $$2BibTeX$$aARTICLE
000841706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841706 3367_ $$00$$2EndNote$$aJournal Article
000841706 520__ $$aFuture energy systems will likely be challenged by large quantities of stranded renewable electricity that cannot be used in the conventional electrical grid. Using surplus electricity for electrolysis and thereby producing hydrogen is seen as a valuable solution functioning as an energy storage and transport medium and providing other sectors, such as transport or industry, with required feedstocks at the same time. In this study, we suggest using a set of assessment tools to highlight the quantitative potential, cost and environmental performance of electrolytic hydrogen production, transmission and storage. Our approach employs power sector modeling for Germany with three sequential elements: (i) a market model, (ii) power flow modeling, and (iii) re-dispatch modeling. The results were then used to identify suitable locations for large scale electrolysis plants. Electrolysis, large-scale gas storage, a transmission pipeline and other system components were scaled-up and the total cost was calculated. In a final step, we looked at greenhouse gas emissions as one of the major aspects regarding the environmental performance of the hydrogen delivered. Based on our analysis, annual hydrogen production rates of up to 189 kilotons have been determined for the state of Schleswig-Holstein, which exhibits the largest potential for utilizing surplus power from renewables. The economic analysis reveals a hydrogen cost of 3.63–5.81€ kg−1, including installations, for large-scale storage and transmission. If surplus power from renewables is used for hydrogen production, the total greenhouse gas emissions of hydrogen provision were determined to be up to 435 gCO2-eq. kg−1. Using grid electricity, this value increased to some 17 000 gCO2-eq. kg−1.
000841706 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000841706 588__ $$aDataset connected to CrossRef
000841706 7001_ $$0P:(DE-HGF)0$$aDoré, Larissa$$b1
000841706 7001_ $$0P:(DE-HGF)0$$aHoffrichter, André$$b2
000841706 7001_ $$0P:(DE-HGF)0$$aHombach, Laura Elisabeth$$b3
000841706 7001_ $$0P:(DE-HGF)0$$aRaths, Stephan$$b4
000841706 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5
000841706 7001_ $$0P:(DE-HGF)0$$aNobis, Moritz$$b6
000841706 7001_ $$0P:(DE-Juel1)140120$$aSchiebahn, Sebastian$$b7
000841706 7001_ $$0P:(DE-Juel1)136826$$aTietze, Vanessa$$b8
000841706 7001_ $$0P:(DE-HGF)0$$aSchnettler, Armin$$b9
000841706 7001_ $$0P:(DE-HGF)0$$aWalther, Grit$$b10
000841706 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b11
000841706 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/C8SE00008E$$gVol. 2, no. 7, p. 1500 - 1515$$n7$$p1500 - 1515$$tSustainable energy & fuels$$v2$$x2398-4902$$y2018
000841706 8564_ $$uhttps://juser.fz-juelich.de/record/841706/files/c8se00008e.pdf$$yRestricted
000841706 8564_ $$uhttps://juser.fz-juelich.de/record/841706/files/c8se00008e.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841706 909CO $$ooai:juser.fz-juelich.de:841706$$pVDB
000841706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b0$$kFZJ
000841706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000841706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b11$$kFZJ
000841706 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b11$$kRWTH
000841706 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000841706 9141_ $$y2018
000841706 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000841706 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERG FUELS : 2017
000841706 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000841706 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841706 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841706 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841706 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841706 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841706 920__ $$lyes
000841706 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000841706 980__ $$ajournal
000841706 980__ $$aVDB
000841706 980__ $$aI:(DE-Juel1)IEK-3-20101013
000841706 980__ $$aUNRESTRICTED
000841706 981__ $$aI:(DE-Juel1)ICE-2-20101013