001     841706
005     20240711101552.0
024 7 _ |a 10.1039/C8SE00008E
|2 doi
024 7 _ |a WOS:000436519000011
|2 WOS
037 _ _ |a FZJ-2018-00014
082 _ _ |a 660
100 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 0
|e Corresponding author
245 _ _ |a An Option for Stranded Renewables: Electrolytic-Hydrogen in Future Energy Systems
260 _ _ |a Cambridge
|c 2018
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547481135_23129
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Future energy systems will likely be challenged by large quantities of stranded renewable electricity that cannot be used in the conventional electrical grid. Using surplus electricity for electrolysis and thereby producing hydrogen is seen as a valuable solution functioning as an energy storage and transport medium and providing other sectors, such as transport or industry, with required feedstocks at the same time. In this study, we suggest using a set of assessment tools to highlight the quantitative potential, cost and environmental performance of electrolytic hydrogen production, transmission and storage. Our approach employs power sector modeling for Germany with three sequential elements: (i) a market model, (ii) power flow modeling, and (iii) re-dispatch modeling. The results were then used to identify suitable locations for large scale electrolysis plants. Electrolysis, large-scale gas storage, a transmission pipeline and other system components were scaled-up and the total cost was calculated. In a final step, we looked at greenhouse gas emissions as one of the major aspects regarding the environmental performance of the hydrogen delivered. Based on our analysis, annual hydrogen production rates of up to 189 kilotons have been determined for the state of Schleswig-Holstein, which exhibits the largest potential for utilizing surplus power from renewables. The economic analysis reveals a hydrogen cost of 3.63–5.81€ kg−1, including installations, for large-scale storage and transmission. If surplus power from renewables is used for hydrogen production, the total greenhouse gas emissions of hydrogen provision were determined to be up to 435 gCO2-eq. kg−1. Using grid electricity, this value increased to some 17 000 gCO2-eq. kg−1.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Doré, Larissa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffrichter, André
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hombach, Laura Elisabeth
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Raths, Stephan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
700 1 _ |a Nobis, Moritz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schiebahn, Sebastian
|0 P:(DE-Juel1)140120
|b 7
700 1 _ |a Tietze, Vanessa
|0 P:(DE-Juel1)136826
|b 8
700 1 _ |a Schnettler, Armin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Walther, Grit
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 11
773 _ _ |a 10.1039/C8SE00008E
|g Vol. 2, no. 7, p. 1500 - 1515
|0 PERI:(DE-600)2882651-6
|n 7
|p 1500 - 1515
|t Sustainable energy & fuels
|v 2
|y 2018
|x 2398-4902
856 4 _ |u https://juser.fz-juelich.de/record/841706/files/c8se00008e.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841706/files/c8se00008e.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841706
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 11
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUSTAIN ENERG FUELS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21