000841708 001__ 841708
000841708 005__ 20240708133100.0
000841708 0247_ $$2doi$$a10.1016/j.rser.2019.109289
000841708 0247_ $$2ISSN$$a1364-0321
000841708 0247_ $$2ISSN$$a1879-0690
000841708 0247_ $$2WOS$$aWOS:000483422600056
000841708 037__ $$aFZJ-2018-00016
000841708 082__ $$a620
000841708 1001_ $$0P:(DE-Juel1)171752$$aQiu, Diankai$$b0$$eCorresponding author
000841708 245__ $$aMechanical Failure and Mitigation Strategies for the Membrane in a Proton Exchance Membrane Fuel Cell
000841708 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000841708 3367_ $$2DRIVER$$aarticle
000841708 3367_ $$2DataCite$$aOutput Types/Journal article
000841708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568036529_22203
000841708 3367_ $$2BibTeX$$aARTICLE
000841708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841708 3367_ $$00$$2EndNote$$aJournal Article
000841708 520__ $$aProton exchange membrane (PEM) fuel cells are promising zero-emission power source for automobiles, portable devices, backup power system and stationary applications. However, their relatively short lifespan remains a major obstacle to the commercial deployment of this type of fuel cell. The membrane's mechanical degradation is the main cause of early-stage failure in fuel cell lifetimes. In order to provide engineers and researchers with a basis for extending fuel cell durability, this paper presents an overview of important issues relating to mechanical failure and mitigation strategies for PEM fuel cell membranes, drawing on a survey of the existing literature. This review begins with a sketch of failure mechanisms in an effort to establish an unambiguous definition of membrane degradation in each stage of its lifespan. The material properties of typical membranes are outlined below to illustrate the fundamentals of their mechanical behavior and cell degradation. Following the lifespan of a membrane, the causes and mechanisms of mechanical degradation in the fabrication process, cell assembly process, short-term phase and long-term phase of cell operation are discussed in detail. Practical strategies for reducing the degradation rate are introduced to each process. Finally, in-situ and ex-situ methods for the evaluation and characterization of mechanical durability are summarized to pursue the measurement methods and protocols of membranes. The aim is to assess which mechanisms affect the mechanical failure of membranes and how degradation should be mitigated across the entire lifetime of fuel cells. A summary of further work in this area is also provided to give a direction to future research.
000841708 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000841708 588__ $$aDataset connected to CrossRef
000841708 7001_ $$0P:(DE-HGF)0$$aPeng, Linfa$$b1
000841708 7001_ $$0P:(DE-HGF)0$$aLai, Xinmin$$b2
000841708 7001_ $$0P:(DE-HGF)0$$aMeng, Ni$$b3
000841708 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4
000841708 773__ $$0PERI:(DE-600)2019940-5$$a10.1016/j.rser.2019.109289$$gVol. 113, p. 109289 -$$p109289 -$$tRenewable & sustainable energy reviews$$v113$$x1364-0321$$y2019
000841708 909CO $$ooai:juser.fz-juelich.de:841708$$pVDB
000841708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000841708 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000841708 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000841708 9141_ $$y2019
000841708 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRENEW SUST ENERG REV : 2015
000841708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841708 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841708 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841708 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841708 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRENEW SUST ENERG REV : 2015
000841708 920__ $$lyes
000841708 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000841708 980__ $$ajournal
000841708 980__ $$aVDB
000841708 980__ $$aI:(DE-Juel1)IEK-3-20101013
000841708 980__ $$aUNRESTRICTED
000841708 981__ $$aI:(DE-Juel1)ICE-2-20101013