000841713 001__ 841713
000841713 005__ 20240712100920.0
000841713 0247_ $$2doi$$a10.5194/acp-17-7703-2017
000841713 0247_ $$2Handle$$a2128/16341
000841713 0247_ $$2WOS$$aWOS:000404403900003
000841713 0247_ $$2altmetric$$aaltmetric:21347843
000841713 037__ $$aFZJ-2018-00021
000841713 082__ $$a550
000841713 1001_ $$0P:(DE-HGF)0$$aDietmüller, S.$$b0$$eCorresponding author
000841713 245__ $$aEffects of mixing on resolved and unresolved scales on stratospheric age of air
000841713 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000841713 3367_ $$2DRIVER$$aarticle
000841713 3367_ $$2DataCite$$aOutput Types/Journal article
000841713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514980341_27314
000841713 3367_ $$2BibTeX$$aARTICLE
000841713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841713 3367_ $$00$$2EndNote$$aJournal Article
000841713 520__ $$aMean age of air (AoA) is a widely used metric to describe the transport along the Brewer–Dobson circulation. We seek to untangle the effects of different processes on the simulation of AoA, using the chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) and the Chemical Lagrangian Model of the Stratosphere (CLaMS). Here, the effects of residual transport and two-way mixing on AoA are calculated. To do so, we calculate the residual circulation transit time (RCTT). The difference of AoA and RCTT is defined as aging by mixing. However, as diffusion is also included in this difference, we further use a method to directly calculate aging by mixing on resolved scales. Comparing these two methods of calculating aging by mixing allows for separating the effect of unresolved aging by mixing (which we term "aging by diffusion" in the following) in EMAC and CLaMS. We find that diffusion impacts AoA by making air older, but its contribution plays a minor role (order of 10 %) in all simulations. However, due to the different advection schemes of the two models, aging by diffusion has a larger effect on AoA and mixing efficiency in EMAC, compared to CLaMS. Regarding the trends in AoA, in CLaMS the AoA trend is negative throughout the stratosphere except in the Northern Hemisphere middle stratosphere, consistent with observations. This slight positive trend is neither reproduced in a free-running nor in a nudged simulation with EMAC – in both simulations the AoA trend is negative throughout the stratosphere. Trends in AoA are mainly driven by the contributions of RCTT and aging by mixing, whereas the contribution of aging by diffusion plays a minor role.
000841713 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000841713 7001_ $$0P:(DE-HGF)0$$aGarny, H.$$b1
000841713 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b2$$ufzj
000841713 7001_ $$0P:(DE-HGF)0$$aJöckel, P.$$b3
000841713 7001_ $$0P:(DE-HGF)0$$aDuy, C.$$b4
000841713 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-7703-2017$$p7703-7719$$tAtmospheric chemistry and physics$$v17$$x1680-7316$$y2017
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.pdf$$yOpenAccess
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.gif?subformat=icon$$xicon$$yOpenAccess
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841713 8564_ $$uhttps://juser.fz-juelich.de/record/841713/files/acp-17-7703-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841713 909CO $$ooai:juser.fz-juelich.de:841713$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000841713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b2$$kFZJ
000841713 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000841713 9141_ $$y2017
000841713 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000841713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841713 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000841713 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841713 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841713 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841713 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841713 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000841713 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841713 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000841713 9801_ $$aFullTexts
000841713 980__ $$ajournal
000841713 980__ $$aVDB
000841713 980__ $$aUNRESTRICTED
000841713 980__ $$aI:(DE-Juel1)IEK-7-20101013
000841713 981__ $$aI:(DE-Juel1)ICE-4-20101013