000841714 001__ 841714
000841714 005__ 20240708133100.0
000841714 0247_ $$2doi$$a10.1039/C9SE00007K
000841714 0247_ $$2WOS$$aWOS:000467218700014
000841714 0247_ $$2altmetric$$aaltmetric:56076742
000841714 037__ $$aFZJ-2018-00022
000841714 082__ $$a660
000841714 1001_ $$0P:(DE-Juel1)168335$$aReuss, Markus$$b0$$eCorresponding author
000841714 245__ $$aSolar Hydrogen Production: A Bottom-up Analysis of Different Photovoltaic-Electrolysis Pathway9
000841714 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2019
000841714 3367_ $$2DRIVER$$aarticle
000841714 3367_ $$2DataCite$$aOutput Types/Journal article
000841714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604409725_593
000841714 3367_ $$2BibTeX$$aARTICLE
000841714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841714 3367_ $$00$$2EndNote$$aJournal Article
000841714 520__ $$aThe conventional energy system is undergoing a transformation towards renewable energy technologies, as society strives for sustainable and green energy supply. This has created challenges, such as spatial and temporal imbalances of energy demand and feed-in arising from volatile renewable energy resources. A possible solution to this challenge is presented by hydrogen as a versatile chemical storage medium. Promising technologies for producing hydrogen from renewable energy include the production pathways photoelectrolysis (PEC) and photovoltaic–electrolysis (PV–EL). This paper examines three production pathways which differ in the connection and integration of the constituent photovoltaic (PV) and electrolysis (EL) subsystems by modelling the integrated system's behaviour under the various device designs and operational conditions. The model is based on the electrochemical processes and addresses losses and how the overall performance can be enhanced, in contrast to literature-based models. The efficiency of the subsystems, as well as the coupling efficiency, are predicted under various conditions, enabling the determination of optimum design and operational parameters. This analysis is enhanced by an application of the PV–EL pathways to the hourly weather conditions of Jülich, Germany. The solar to hydrogen efficiency was found to drop as the level of integration increased. The study showed that varying weather conditions strongly affect the efficiency of integrated systems and should be further taken into account for future improvement and cost estimations of integrated device performance.
000841714 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000841714 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000841714 588__ $$aDataset connected to CrossRef
000841714 7001_ $$0P:(DE-Juel1)173852$$aReul, Julian$$b1
000841714 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2
000841714 7001_ $$0P:(DE-Juel1)156551$$aLangemann, Manuel$$b3
000841714 7001_ $$0P:(DE-HGF)0$$aCalnan, S.$$b4
000841714 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5
000841714 7001_ $$0P:(DE-HGF)0$$aSchlatmann, Rutger$$b6
000841714 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b7
000841714 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8
000841714 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/C9SE00007K$$gp. 10.1039.C9SE00007K$$n3$$p801-803$$tSustainable energy & fuels$$v3$$x2398-4902$$y2019
000841714 909CO $$ooai:juser.fz-juelich.de:841714$$pVDB
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168335$$aForschungszentrum Jülich$$b0$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173852$$aForschungszentrum Jülich$$b1$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156551$$aForschungszentrum Jülich$$b3$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b7$$kFZJ
000841714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000841714 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000841714 9141_ $$y2019
000841714 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000841714 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERG FUELS : 2017
000841714 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000841714 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841714 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841714 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841714 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841714 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841714 920__ $$lyes
000841714 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000841714 980__ $$ajournal
000841714 980__ $$aVDB
000841714 980__ $$aI:(DE-Juel1)IEK-3-20101013
000841714 980__ $$aUNRESTRICTED
000841714 981__ $$aI:(DE-Juel1)ICE-2-20101013