000841716 001__ 841716
000841716 005__ 20240712100918.0
000841716 0247_ $$2doi$$a10.5194/acp-2017-1072
000841716 0247_ $$2ISSN$$a1680-7367
000841716 0247_ $$2ISSN$$a1680-7375
000841716 0247_ $$2Handle$$a2128/16343
000841716 0247_ $$2altmetric$$aaltmetric:29673856
000841716 037__ $$aFZJ-2018-00024
000841716 082__ $$a550
000841716 1001_ $$0P:(DE-Juel1)165935$$aPoshyvailo, Liubov$$b0$$eCorresponding author
000841716 245__ $$aSensitivities of modelled water vapour in the lower stratosphere: temperature uncertainty, effects of horizontal transport and small-scale mixing
000841716 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000841716 3367_ $$2DRIVER$$aarticle
000841716 3367_ $$2DataCite$$aOutput Types/Journal article
000841716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530617165_18592
000841716 3367_ $$2BibTeX$$aARTICLE
000841716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841716 3367_ $$00$$2EndNote$$aJournal Article
000841716 520__ $$aWater vapour (H2O) in the upper troposphere and lower stratosphere (UTLS) is a key player for global radiation. A realistic representation of H2O is critical for climate model predictions of future climate change. Here, we investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O in the lower stratosphere (LS).To assess the sensitivities of simulated H2O, we use the Chemical Lagrangian Model of the Stratosphere (CLaMS). First, we examine CLaMS driven by two different reanalysis, ERA-Interim and Japanese 55-year (JRA-55) reanalysis, to investigate the robustness with respect to the meteorological dataset. Second, we carry out CLaMS simulations with transport barriers along latitude circles (at the equator, 15° N/S and 35° N/S) to assess the effects of horizontal transport. Third, we vary the strength of parametrized small-scale mixing in CLaMS.Our results show significant differences (about 0.5 ppmv) in simulated stratospheric H2O due to uncertainties in the tropical tropopause temperatures between current reanalysis datasets. The JRA-55 based simulation is significantly moister when compared to ERA-Interim, due to a warmer tropical tropopause in JRA-55 reanalysis. The transport barrier experiments demonstrate that the Northern Hemisphere (NH) subtropics have a strong moistening effect on global stratospheric H2O. Interhemispheric exchange shows only a very weak effect on stratospheric H2O. Small-scale mixing mainly increases troposphere–stratosphere exchange, causing an enhancement of stratospheric H2O, particularly along the subtropical jets and in the Asian monsoon region.The sensitivity studies presented here provide new insights into the leading processes that control stratospheric H2O, important for assessing and improving climate model projections.
000841716 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000841716 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000841716 588__ $$aDataset connected to CrossRef
000841716 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000841716 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$ufzj
000841716 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b3
000841716 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4$$ufzj
000841716 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b5$$ufzj
000841716 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-1072$$gp. 1 - 29$$p1 - 29$$tAtmospheric chemistry and physics / Discussions$$v1072$$x1680-7375$$y2017
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/acp-2017-1072.pdf$$yOpenAccess
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/acp-2017-1072.gif?subformat=icon$$xicon$$yOpenAccess
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/acp-2017-1072.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/acp-2017-1072.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/acp-2017-1072.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000841716 8564_ $$uhttps://juser.fz-juelich.de/record/841716/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000841716 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$pacp-2017-1072
000841716 909CO $$ooai:juser.fz-juelich.de:841716$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165935$$aForschungszentrum Jülich$$b0$$kFZJ
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b3$$kFZJ
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b4$$kFZJ
000841716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b5$$kFZJ
000841716 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000841716 9141_ $$y2017
000841716 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841716 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841716 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841716 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841716 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841716 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000841716 9801_ $$aFullTexts
000841716 980__ $$ajournal
000841716 980__ $$aVDB
000841716 980__ $$aI:(DE-Juel1)IEK-7-20101013
000841716 980__ $$aUNRESTRICTED
000841716 980__ $$aAPC
000841716 981__ $$aI:(DE-Juel1)ICE-4-20101013