000841726 001__ 841726
000841726 005__ 20210129232058.0
000841726 0247_ $$2doi$$a10.1038/s41467-017-02367-6
000841726 0247_ $$2Handle$$a2128/16344
000841726 0247_ $$2pmid$$apmid:29273736
000841726 0247_ $$2WOS$$aWOS:000418570600024
000841726 0247_ $$2altmetric$$aaltmetric:30806895
000841726 037__ $$aFZJ-2018-00034
000841726 082__ $$a500
000841726 1001_ $$00000-0003-1817-2372$$aMartineau, Magalie$$b0$$eCorresponding author
000841726 245__ $$aVGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses
000841726 260__ $$aLondon$$bNature Publishing Group$$c2017
000841726 3367_ $$2DRIVER$$aarticle
000841726 3367_ $$2DataCite$$aOutput Types/Journal article
000841726 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1514980983_27316
000841726 3367_ $$2BibTeX$$aARTICLE
000841726 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841726 3367_ $$00$$2EndNote$$aJournal Article
000841726 520__ $$aGlutamate is the major excitatory transmitter in the vertebrate nervous system. To maintain synaptic efficacy, recycling synaptic vesicles (SV) are refilled with glutamate by vesicular glutamate transporters (VGLUTs). The dynamics and mechanism of glutamate uptake in intact neurons are still largely unknown. Here, we show by live-cell imaging with pH- and chloride-sensitive fluorescent probes in cultured hippocampal neurons of wild-type and VGLUT1-deficient mice that in SVs VGLUT functions as a glutamate/proton exchanger associated with a channel-like chloride conductance. After endocytosis most internalized Cl− is substituted by glutamate in an electrically, and presumably osmotically, neutral manner, and this process is driven by both the Cl− gradient itself and the proton motive force provided by the vacuolar H+-ATPase. Our results shed light on the transport mechanism of VGLUT under physiological conditions and provide a framework for how modulation of glutamate transport via Cl− and pH can change synaptic strength.
000841726 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000841726 588__ $$aDataset connected to CrossRef
000841726 7001_ $$0P:(DE-Juel1)156375$$aGuzman, Raul$$b1
000841726 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b2
000841726 7001_ $$0P:(DE-HGF)0$$aKlingauf, Jürgen$$b3$$eCorresponding author
000841726 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-017-02367-6$$gVol. 8, no. 1, p. 2279$$n1$$p2279$$tNature Communications$$v8$$x2041-1723$$y2017
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.pdf$$yOpenAccess
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.gif?subformat=icon$$xicon$$yOpenAccess
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841726 8564_ $$uhttps://juser.fz-juelich.de/record/841726/files/s41467-017-02367-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841726 909CO $$ooai:juser.fz-juelich.de:841726$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000841726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156375$$aForschungszentrum Jülich$$b1$$kFZJ
000841726 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b2$$kFZJ
000841726 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000841726 9141_ $$y2017
000841726 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841726 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000841726 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841726 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000841726 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000841726 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000841726 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841726 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841726 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841726 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841726 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841726 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841726 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000841726 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841726 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000841726 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841726 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841726 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841726 920__ $$lyes
000841726 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000841726 9801_ $$aFullTexts
000841726 980__ $$ajournal
000841726 980__ $$aVDB
000841726 980__ $$aUNRESTRICTED
000841726 980__ $$aI:(DE-Juel1)ICS-4-20110106
000841726 981__ $$aI:(DE-Juel1)IBI-1-20200312