000841728 001__ 841728
000841728 005__ 20240711101420.0
000841728 0247_ $$2doi$$a10.1016/j.ijhydene.2017.11.054
000841728 0247_ $$2ISSN$$a0360-3199
000841728 0247_ $$2ISSN$$a1879-3487
000841728 0247_ $$2WOS$$aWOS:000424308500053
000841728 037__ $$aFZJ-2018-00036
000841728 082__ $$a660
000841728 1001_ $$0P:(DE-HGF)0$$aPreuster, Patrick$$b0
000841728 245__ $$aSolid Oxide Fuel Cell Operating on Liquid Organic Hydrogen Carrier-based Hydrogen - Making Full Use of Heat Integration Potentials
000841728 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000841728 3367_ $$2DRIVER$$aarticle
000841728 3367_ $$2DataCite$$aOutput Types/Journal article
000841728 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515590147_4337
000841728 3367_ $$2BibTeX$$aARTICLE
000841728 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841728 3367_ $$00$$2EndNote$$aJournal Article
000841728 520__ $$aOur contribution demonstrates the technological potential of coupling Liquid Organic Hydrogen Carrier (LOHC)-based hydrogen storage and hydrogen-based Solid Oxide Fuel Cell (SOFC) operation. As SOFC operation creates waste heat at a temperature level of more than 600 °C, clever heat transfer from the SOFC operation to the LOHC dehydrogenation process is possible and results in an overall efficiency of 45% (electric output of SOFC vs. lower heating value of LOHC-bound hydrogen). Moreover, we demonstrate that LOHC vapour does not harm the operational stability of a typical 150 W SOFC short stack. By operating the stack with LOHC-saturated hydrogen, operation times of more than 10 years have been simulated without noticeable degradation of SOFC performance.
000841728 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000841728 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000841728 588__ $$aDataset connected to CrossRef
000841728 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1
000841728 7001_ $$0P:(DE-Juel1)129901$$aPeters, Roland$$b2
000841728 7001_ $$0P:(DE-Juel1)129838$$aDeja, Robert$$b3
000841728 7001_ $$0P:(DE-Juel1)143789$$aNguyen, Van Nhu$$b4
000841728 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b5
000841728 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000841728 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b7$$eCorresponding author
000841728 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2017.11.054$$gVol. 43, no. 3, p. 1758 - 1768$$n3$$p1758 - 1768$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.pdf$$yRestricted
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.gif?subformat=icon$$xicon$$yRestricted
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841728 8564_ $$uhttps://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841728 909CO $$ooai:juser.fz-juelich.de:841728$$pVDB
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129901$$aForschungszentrum Jülich$$b2$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129838$$aForschungszentrum Jülich$$b3$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143789$$aForschungszentrum Jülich$$b4$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b5$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000841728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b7$$kFZJ
000841728 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000841728 9141_ $$y2018
000841728 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000841728 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841728 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841728 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841728 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841728 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841728 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841728 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841728 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841728 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841728 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841728 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841728 920__ $$lyes
000841728 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000841728 980__ $$ajournal
000841728 980__ $$aVDB
000841728 980__ $$aI:(DE-Juel1)IEK-3-20101013
000841728 980__ $$aUNRESTRICTED
000841728 981__ $$aI:(DE-Juel1)ICE-2-20101013