001     841728
005     20240711101420.0
024 7 _ |a 10.1016/j.ijhydene.2017.11.054
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000424308500053
|2 WOS
037 _ _ |a FZJ-2018-00036
082 _ _ |a 660
100 1 _ |a Preuster, Patrick
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Solid Oxide Fuel Cell Operating on Liquid Organic Hydrogen Carrier-based Hydrogen - Making Full Use of Heat Integration Potentials
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515590147_4337
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Our contribution demonstrates the technological potential of coupling Liquid Organic Hydrogen Carrier (LOHC)-based hydrogen storage and hydrogen-based Solid Oxide Fuel Cell (SOFC) operation. As SOFC operation creates waste heat at a temperature level of more than 600 °C, clever heat transfer from the SOFC operation to the LOHC dehydrogenation process is possible and results in an overall efficiency of 45% (electric output of SOFC vs. lower heating value of LOHC-bound hydrogen). Moreover, we demonstrate that LOHC vapour does not harm the operational stability of a typical 150 W SOFC short stack. By operating the stack with LOHC-saturated hydrogen, operation times of more than 10 years have been simulated without noticeable degradation of SOFC performance.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fang, Qingping
|0 P:(DE-Juel1)145945
|b 1
700 1 _ |a Peters, Roland
|0 P:(DE-Juel1)129901
|b 2
700 1 _ |a Deja, Robert
|0 P:(DE-Juel1)129838
|b 3
700 1 _ |a Nguyen, Van Nhu
|0 P:(DE-Juel1)143789
|b 4
700 1 _ |a Blum, Ludger
|0 P:(DE-Juel1)129828
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
700 1 _ |a Wasserscheid, Peter
|0 P:(DE-Juel1)162305
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2017.11.054
|g Vol. 43, no. 3, p. 1758 - 1768
|0 PERI:(DE-600)1484487-4
|n 3
|p 1758 - 1768
|t International journal of hydrogen energy
|v 43
|y 2018
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841728/files/1-s2.0-S0360319917343719-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841728
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145945
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129901
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)143789
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162305
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21