001     841758
005     20210129232101.0
024 7 _ |a 10.1016/j.jhydrol.2017.10.003
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a 2128/16350
|2 Handle
024 7 _ |a WOS:000418107600003
|2 WOS
037 _ _ |a FZJ-2018-00062
082 _ _ |a 690
100 1 _ |a Stockinger, Michael
|0 P:(DE-Juel1)144847
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Accounting for seasonal isotopic patterns of forest canopy intercepted precipitation in streamflow modeling
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515074530_1048
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Forest canopy interception alters the isotopic tracer signal of precipitation leading to significant isotopic differences between open precipitation (δOP) and throughfall (δTF). This has important consequences for the tracer-based modeling of streamwater transit times. Some studies have suggested using a simple static correction to δOP by uniformly increasing it because δTF is rarely available for hydrological modeling. Here, we used data from a 38.5 ha spruce forested headwater catchment where three years of δOP and δTF were available to develop a data driven method that accounts for canopy effects on δOP. Changes in isotopic composition, defined as the difference δTF-δOP, varied seasonally with higher values during winter and lower values during summer. We used this pattern to derive a corrected δOP time series and analyzed the impact of using (1) δOP, (2) reference throughfall data (δTFref) and (3) the corrected δOP time series (δOPSine) in estimating the fraction of young water (Fyw), i.e., the percentage of streamflow younger than two to three months. We found that Fyw derived from δOPSine came closer to δTFref in comparison to δOP. Thus, a seasonally-varying correction for δOP can be successfully used to infer δTF where it is not available and is superior to the method of using a fixed correction factor. Seasonal isotopic enrichment patterns should be accounted for when estimating Fyw and more generally in catchment hydrology studies using other tracer methods to reduce uncertainty.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lücke, Andreas
|0 P:(DE-Juel1)129567
|b 1
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 2
|u fzj
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 3
|u fzj
773 _ _ |a 10.1016/j.jhydrol.2017.10.003
|g Vol. 555, p. 31 - 40
|0 PERI:(DE-600)1473173-3
|p 31 - 40
|t Journal of hydrology
|v 555
|y 2017
|x 0022-1694
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841758/files/1-s2.0-S0022169417306674-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841758
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129440
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21