000841759 001__ 841759
000841759 005__ 20210129232101.0
000841759 0247_ $$2doi$$a10.5194/hess-21-5929-2017
000841759 0247_ $$2ISSN$$a1027-5606
000841759 0247_ $$2ISSN$$a1607-7938
000841759 0247_ $$2Handle$$a2128/16352
000841759 0247_ $$2WOS$$aWOS:000416334700002
000841759 0247_ $$2altmetric$$aaltmetric:29571496
000841759 037__ $$aFZJ-2018-00063
000841759 082__ $$a550
000841759 1001_ $$0P:(DE-HGF)0$$aRains, Dominik$$b0$$eCorresponding author
000841759 245__ $$aSMOS brightness temperature assimilation into the Community Land Model
000841759 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000841759 3367_ $$2DRIVER$$aarticle
000841759 3367_ $$2DataCite$$aOutput Types/Journal article
000841759 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515075435_1052
000841759 3367_ $$2BibTeX$$aARTICLE
000841759 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841759 3367_ $$00$$2EndNote$$aJournal Article
000841759 520__ $$aSMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010–2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
000841759 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000841759 588__ $$aDataset connected to CrossRef
000841759 7001_ $$00000-0002-8290-9837$$aHan, Xujun$$b1
000841759 7001_ $$0P:(DE-HGF)0$$aLievens, Hans$$b2
000841759 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b3
000841759 7001_ $$00000-0003-4116-8881$$aVerhoest, Niko E. C.$$b4
000841759 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-21-5929-2017$$gVol. 21, no. 11, p. 5929 - 5951$$n11$$p5929 - 5951$$tHydrology and earth system sciences$$v21$$x1607-7938$$y2017
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.pdf$$yOpenAccess
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.gif?subformat=icon$$xicon$$yOpenAccess
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841759 8564_ $$uhttps://juser.fz-juelich.de/record/841759/files/hess-21-5929-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841759 909CO $$ooai:juser.fz-juelich.de:841759$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000841759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b3$$kFZJ
000841759 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000841759 9141_ $$y2017
000841759 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000841759 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841759 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHYDROL EARTH SYST SC : 2015
000841759 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841759 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841759 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841759 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841759 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841759 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841759 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841759 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841759 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000841759 980__ $$ajournal
000841759 980__ $$aVDB
000841759 980__ $$aUNRESTRICTED
000841759 980__ $$aI:(DE-Juel1)IBG-3-20101118
000841759 9801_ $$aFullTexts