000841822 001__ 841822
000841822 005__ 20240610121107.0
000841822 0247_ $$2doi$$a10.1103/PhysRevLett.118.030601
000841822 0247_ $$2ISSN$$a0031-9007
000841822 0247_ $$2ISSN$$a1079-7114
000841822 0247_ $$2ISSN$$a1092-0145
000841822 0247_ $$2Handle$$a2128/16380
000841822 0247_ $$2pmid$$apmid:28157348
000841822 0247_ $$2WOS$$aWOS:000392289600002
000841822 0247_ $$2altmetric$$aaltmetric:8748364
000841822 037__ $$aFZJ-2018-00123
000841822 082__ $$a550
000841822 1001_ $$0P:(DE-HGF)0$$aKarevski, D.$$b0
000841822 245__ $$aConformal Invariance in Driven Diffusive Systems at High Currents
000841822 260__ $$aCollege Park, Md.$$bAPS$$c2017
000841822 3367_ $$2DRIVER$$aarticle
000841822 3367_ $$2DataCite$$aOutput Types/Journal article
000841822 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515394130_28979
000841822 3367_ $$2BibTeX$$aARTICLE
000841822 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841822 3367_ $$00$$2EndNote$$aJournal Article
000841822 520__ $$aWe consider space-time correlations in driven diffusive systems which undergo a fluctuation into a regime with an atypically large current or dynamical activity. For a single conserved mass we show that the spatiotemporal density correlations in one space dimension are fully determined by conformal field theory with central charge c=1, corresponding to a ballistic universality class with dynamical exponent z=1. The full phase diagram for general atypical behavior exhibits the conformally invariant regime and, for atypically low current or activity, a region of phase separation. The phase transition line between these two regimes corresponds to typical behavior and the dynamics belongs to the Kardar-Parisi-Zhang universality class with dynamical exponent z=3/2, except for a diffusive point with z=2. The exact universal dynamical structure function is obtained in explicit form from the one-dimensional asymmetric simple exclusion process with periodic and open boundaries in the limit of maximal current.
000841822 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000841822 588__ $$aDataset connected to CrossRef
000841822 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G. M.$$b1$$eCorresponding author$$ufzj
000841822 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.118.030601$$gVol. 118, no. 3, p. 030601$$n3$$p030601$$tPhysical review letters$$v118$$x1079-7114$$y2017
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.pdf$$yOpenAccess
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.gif?subformat=icon$$xicon$$yOpenAccess
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841822 8564_ $$uhttps://juser.fz-juelich.de/record/841822/files/PhysRevLett.118.030601.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841822 909CO $$ooai:juser.fz-juelich.de:841822$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000841822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich$$b1$$kFZJ
000841822 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000841822 9141_ $$y2017
000841822 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841822 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841822 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000841822 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000841822 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000841822 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841822 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841822 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841822 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841822 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841822 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841822 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841822 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841822 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841822 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841822 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000841822 9801_ $$aFullTexts
000841822 980__ $$ajournal
000841822 980__ $$aVDB
000841822 980__ $$aUNRESTRICTED
000841822 980__ $$aI:(DE-Juel1)ICS-2-20110106
000841822 981__ $$aI:(DE-Juel1)IBI-5-20200312
000841822 981__ $$aI:(DE-Juel1)IAS-2-20090406