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We consider space-time correlations in driven diffusive systems which undergo a fluctuation into a

regime with an atypically large current or dynamical activity. For a single conserved mass we show that the

spatiotemporal density correlations in one space dimension are fully determined by conformal field theory

with central charge c ¼ 1, corresponding to a ballistic universality class with dynamical exponent z ¼ 1.

The full phase diagram for general atypical behavior exhibits the conformally invariant regime and, for

atypically low current or activity, a region of phase separation. The phase transition line between these two

regimes corresponds to typical behavior and the dynamics belongs to the Kardar-Parisi-Zhang universality

class with dynamical exponent z ¼ 3=2, except for a diffusive point with z ¼ 2. The exact universal

dynamical structure function is obtained in explicit form from the one-dimensional asymmetric simple

exclusion process with periodic and open boundaries in the limit of maximal current.
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Introduction.—An intriguing question is whether a

many-body system far from thermal equilibrium that

undergoes some big atypical fluctuation can be understood

in terms of an upscaled description of “normal” spatio-

temporal behavior or whether it behaves in a qualitatively

different fashion during this atypical fluctuation. The

statistical properties of such fluctuations are also the

fundamental object of interest in large deviation theory

which provides—in equilibrium—the foundations of

thermodynamics in terms of thermodynamic ensembles.

Of course, one does not expect a unique answer to a

question posed so generally, but some insight into large

fluctuations without external trigger may be gained from

considering a reasonably wide, but still well-defined class

of model systems, viz. stochastic lattice gas models that

have served as paradigmatic models for nonequilibrium

phenomena in the last decades [1–4].

These models have a stochastic particle hopping dynam-

ics that mimics noise, interactions between particles fre-

quently include a hard-core repulsion, and a bulk driving

field or boundary gradients maintain a fluctuating non-

equilibrium steady state with a nonzero locally conserved

mass current. The basic example is the asymmetric simple

exclusion process (ASEP) in one dimension where lattice

sites can be occupied by at most one particle. They jump

randomly to their nearest neighbor sites, provided the target

site is empty. Biased jump rates w0e
f to the right and w0e

−f

to the left and/or open boundaries, where particle

exchanges with reservoirs take place, create a nonequili-

brium situation.

The fundamental question is whether in a driven lattice

gas the spatiotemporal fluctuation patterns remain essen-

tially unchanged during an untypical large fluctuation of

the current (or more generally of the undirected jump

activity of the particles), or whether correlations during

such a fluctuation are qualitatively different from typical

behavior.

The answer that we shall give is, in a nutshell, the

following. (I) If a system with hard-core repulsion that is

typically in a stationary state of spatially homogeneous

density undergoes a large fluctuation into a regime of low

current or jump activity then this is most likely realized by

phase separation into domains of high and low density,

respectively, and not by fluctuations in the random time at

which particles attempt to jump (upscaling), as is the case,

e.g., for simple random walkers. (II) Conversely, during a

fluctuation into a regime of high current or jump activity,

the homogeneous stationary density is maintained, but a

qualitative change of density correlations typically realizes

the atypical large fluctuation [5]. Going further, we assert

that these space-time correlations are universal and can be

predicted for nonequilibrium particle systems in one

space dimension from conformal field theory for two-

dimensional equilibrium critical phenomena [6,7].

The first answer can be understood by noting that in a

region of high density fewer jumps will occur naturally due

to the repulsive interaction, while in a low-density region

fewer jumps occur trivially because of the smaller number

of particles, thus optimizing the probability for such

untypical behavior. This picture is well borne out by the

powerful machinery of Macroscopic Fluctuation Theory

[8], which demonstrates for the ASEP that phase separation

sets in below some critical atypical current [9–13]. Such a

dynamical phase transition was found also for an atypically

low activity in the symmetric simple exclusion process

(SSEP) which has no hopping bias [14].
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On the contrary, for the until now poorly understood

fluctuations with a large current or activity, such phase

separation would be counterproductive and one expects a

homogeneous bulk density as in the typical steady state. It

is aim of this work to establish that in the stationary regime

of any higher-than-typical current or activity one can go

much beyond macroscopic fluctuation theory: In 1þ 1

dimensions all spatiotemporal correlations are fully

described by conformal field theory (CFT).

In particular, we predict that in a translation invariant

setting with a single locally conserved current the dynami-

cal structure function Sðk; l; tÞ ¼ hðnkðtÞ − ρkÞðnlðtÞ−
ρlÞi, i.e., the stationary space-time correlations of the local

particle numbers nkðtÞ with local average density ρk, has

the universal scaling form

Sðx; tÞ ≈ C1

v2Lt
2

1 − ξ2

ð1þ ξ2Þ2 þ
C2

ðvLtÞ2K
cos ½2ðq�x − ωtÞ�

ð1þ ξ2ÞK ; ð1Þ

with x ¼ k − l, and the scaling variable ξ ¼ ðx − vctÞ=
ðvLtÞ indicating a dynamical exponent z ¼ 1 rather than 2

or 3=2 for typical dynamics, and nonuniversal amplitudes

Ci. The static critical exponent K ≥ 1 depends on the

particle interactions. The collective velocity vc, the

Luttinger liquid time scale vL, the wave vector q�, and
the oscillation frequency ω can be computed from the

generally complex dispersion relation as discussed below.

The cosine term is reminiscent of similar behavior for

fermions in one dimension and it is related to low-energy

processes that connect, close to the Fermi level, right

movers with left movers [15]. Higher-order correlations

are fully determined by a modified CFTwith central charge

c ¼ 1 of the Virasoro algebra, the difference to usual

conformal invariance being the appearance of the collective

velocity vc in the Galilei shift of the space coordinate x and
the time dependence of the oscillating part of the corre-

lation function with frequency ω. Open boundaries are

described by a corresponding boundary CFT.

Dynamical structure function in the conditioned

ASEP.—Working in the ensemble where λ is conjugate

to the current j and μ is conjugate to the activity a on which

we condition, see Refs. [16,17], we prove these assertions

for the ASEP [Fig. 1] in the limiting case of maximal

current. For this case, the dynamical structure has been

computed earlier for periodic conditions [18,19], but the

oscillating contribution in Eq. (1) went unnoticed. Here we

extract this oscillating part from the exact expression for

finite time and finite lattice and also compute the dynamical

structure function for open boundary conditions, which has

not been considered before. We employ finite-size-scaling

theory to identify the central charge and some critical

exponents that characterize the associated CFT.

The starting point of our analysis is the exact mapping of

the dynamics of the ASEP conditioned on an atypical

current or hopping activity to a non-Hermitian Heisenberg

spin-1=2 quantum chain in the ferromagnetic range

~Hðf; λ; μÞ ¼ −
1

4

X

L

k¼1

ð~gk − ΔÞ; ð2Þ

with (arbitrary) time scale w−1
0

¼ 2eμ cosh ðf þ λÞ and
~gk ¼ 2ð1þ νÞσþk σ−kþ1

þ 2ð1 − νÞσ−k σþkþ1
þ Δσzkσ

z
kþ1

: ð3Þ

The anisotropy parameter

Δ ¼ e−μ cosh f

cosh ðf þ λÞ ¼ cos

�

π

2K

�

≥ 0 ð4Þ

fixes the Luttinger parameter K in Eq. (1) and ν ¼
tanh ðf þ λÞ leads to an imaginary Dzyaloshinskii-

Moriya interaction [20]. The case λ ¼ μ ¼ 0 corresponds

to typical dynamics with stationary current j ¼ νρð1 − ρÞ
and activity a ¼ ρð1 − ρÞ for particle density ρ ¼ N=L.
Positive λ and μ correspond to enhanced current and

activity, respectively. The large deviation function is the

lowest eigenvalue per site ϵ0ðf; λ; μÞ of Eq. (2).
In order to show that the non-Hermitian terms in Eq. (3)

lead to the modifications of CFT described above we focus

on maximal current λ → ∞, leading to

H ¼ −
X

L

k¼1

σþk σ
−
kþ1

ð5Þ

for periodic boundary conditions with L sites. Following

Refs. [18,21], the maximal current is realized by two

mechanisms: The trivial speed-up of the jump frequency

(which is absorbed in the time scale w0) and a nontrivial

building up of correlations captured by the dynamical

structure function.

In order to compute the dynamical structure function,

including the oscillating part missing in Refs. [18,19], and

uncover other hallmarks of conformal invariance, we take

the standard approach by diagonalizing Eq. (5) in terms of

Jordan-Wigner fermionic operators [22]. Fourier trans-

formation with momentum p then yields

H ¼
X

L

p¼1

ðP−ϵpĉ
†
pĉp þ Pþϵp−1

2

ĉ†
p−1

2

ĉp−1

2

Þ ð6Þ

in the graded Fock space built by the free fermion creation

operators ĉ†p and annihilation operators ĉp in the even

particle sector and ĉ†p−1=2, ĉp−1=2 in the odd sector. The

single-particle energy is

FIG. 1. Schematic representation of the asymmetric simple

exclusion process. A particle hops to the neighboring site

provided this target site is empty. In the regime of maximal

current the jumps to the left do not contribute to the statistical

properties of the conditioned process.
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ϵp ≔ −e−ð2πip=LÞ: ð7Þ

Remarkably, the ground state for 0 ≤ N ≤ ½L=2� par-

ticles, which is defined by having the lowest real part of the

eigenvalues of Eq. (6), is the same as for the Hermitian case

with ground state energy per site given by

−e0 ¼
vF

L sin ðπ=LÞ ¼ vF

�

1

π
þ π

6L2
þOðL−4Þ

�

; ð8Þ

where vF ¼ sin ðπρÞ is the Fermi velocity. The energy

gaps, however, are in general complex. The lowest gap

(with smallest real part) is given by δ ¼ ϵðNþ1Þ=2 −
ϵðN−1Þ=2 ¼ 2 sin ðπ=LÞ½sin ðπρÞ þ i cos ðπρÞ� with real part.

ℜðδÞ ¼ vF
2π

L

�

1þOðL−2Þ
�

: ð9Þ

For the dynamical structure function at density ρ the

Wick theorem gives

Sρðn;m; tÞ ¼ hc†nðtÞcmð0ÞihcnðtÞc†mð0Þi
−hc†nðtÞc†mð0ÞihcnðtÞcmð0Þi; ð10Þ

where the second part vanishes in the periodic system due

to particle number conservation. The time-dependent oper-

ators are defined by XðtÞ ≔ eHtXe−Ht, which leads to

ĉpðtÞ ¼ e−ϵptĉp and ĉ†pðtÞ ¼ eϵptĉ†p and allows us to

compute straightforwardly the basic correlators in Eq. (10).

In terms of the function

fL;Nðr; tÞ ≔
1

L

X

N

p¼1

eð−2πi=LÞðp−ðNþ1Þ=2Þrþϵp−ðNþ1Þ=2t; ð11Þ

we find the exact result

hc†nþrðtÞcnð0ÞiL;N ¼ fL;Nðr; tÞ; ð12Þ

hcnþrðtÞc†nð0ÞiL;N ¼ ð−1ÞrfL;L−Nð−r; tÞ; ð13Þ

and, therefore,

Sρðr; tÞ ¼ ð−1ÞrfL;Nðr; tÞfL;L−Nð−r; tÞ: ð14Þ

Now we study the thermodynamic limit L, N → ∞, such

that ρ ¼ N=L is finite. We recall the Fermi momentum

kF ¼ πρ and introduce the continuum dispersion relation

ϵðpÞ ≔ −e−ip with its real and imaginary parts

ϵ1ðpÞ ≔ ℜ½ϵðpÞ� ¼ − cosp, ϵ2ðpÞ ≔ ℑ½ϵðpÞ� ¼ sinp. By
taking the derivative of the continuum dispersion relation

with respect to the momentum p, one obtains the Fermi

velocity vF ¼ ϵ0
1
ðkFÞ ¼ sin kF ¼ sin ðπρÞ and the collec-

tive velocity vc ¼ ϵ0
2
ðkFÞ ¼ cos kF ¼ cos ðπρÞ. Notice that

in the Hermitian case ϵ2ðpÞ ¼ 0 and, therefore, vc ¼ 0.

We also define the complex coordinate

z ≔ irþ ϵ0ðkFÞt ¼ i~rþ vFt ¼ vFtð1þ iξÞ; ð15Þ

where ~r ¼ r − vct and the phase angle

φðr; tÞ ≔ kFr − ϵ2ðkFÞt ¼ kFr − sinðkFÞt: ð16Þ

Scaling analysis of Eq. (11) then yields

fρðr; tÞ ¼
e−iφðr;tÞ−t cosðkFÞ

2πz̄
þ c:c: ð17Þ

and we arrive at

Sρðr; tÞ ¼
1

4π2

�

1

z2
þ 1

z̄2
þ 2 cos ½2φðr; tÞ�

zz̄

�

ð18Þ

¼ 1

2ðπvFtÞ2
�

1 − ξ2

ð1þ ξ2Þ2 þ
cos ½2φðr; tÞ�

1þ ξ2

�

; ð19Þ

which is of the predicted form (1) with vL ¼ vF andK ¼ 1.

The main novelty is the oscillating part, which is relevant

for maximal current and which is inaccessible to macro-

scopic fluctuation theory [5]. For nonmaximal large cur-

rents, corresponding toK > 1 in Eq. (1), the oscillating part

is relevant for finite lattices, but it is suppressed in the

scaling limit of macroscopic distances and times τ ¼ t=a
due to the microscopic time scale a that enters, after proper

rescaling of the structure function, the oscillating part in

Eq. (1) with an amplitude a2K−2 that vanishes as a → 0.

As an independent fundamental test for conformal invari-

ance of the strongly non-Hermitian problem we consider

next open boundary conditions where particles are injected

and extracted. This creates several technical difficulties for

the exact treatment, viz. lack of periodicity, violation of

particle conservation, and loss of the bilinear free-fermion

property underlying the computations of the previous para-

graphs. The latter problem, however, can be overcome by

augmenting the lattice with auxiliary boundary sites 0 and

Lþ 1, which swap their state (empty or occupied)whenever

a creation or annihilation event occurs. This leaves the

dynamics of the exclusion process unchanged.

For maximal positive current the left-hopping rates are

irrelevant and only injection to site 1 with rate αr and

absorption into a reservoir at site L with rate βr need to be

considered. The dependence on the boundary rates α

and β can be removed by the similarity transformation

V ¼
Q

L
k¼1

u
n̂k
k with the choice p ¼ ð2αβÞ−ð1=Lþ1Þ and

uk ¼
ffiffiffi

2
p

αpk. The transformed generator then reads in

terms of Jordan-Wigner fermions

H ¼ −
X

L−1

k¼1

c†kþ1
ck −

1
ffiffiffi

2
p ½c†

1
ðc0 − c†

0
Þ þ ðcLþ1 þ c†Lþ1

ÞcL�:

ð20Þ

For L even we define the Bogolyubov transformation

bk ¼
1
ffiffiffi

2
p ðck þ ð−1Þkc†Lþ1−kÞ; 1 ≤ k ≤ L ð21Þ

b0 ¼
1

2
ðc0 − c†

0
þ cLþ1 þ c†Lþ1

Þ: ð22Þ
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The equations of motion read ½H; bk� ¼ bk−1 with periodic

boundary conditions, even though the original problem has

no translation invariance. Subsequent Fourier transforma-

tion leads to H ¼
P

L
p¼0

ϵpb̂
†
pb̂p with the single-particle

“energies” ϵp ¼ −e−ð2πip=Lþ1Þ.
Thus, we are back to a periodic problem, albeit with

Lþ 1 sites and only odd particle number which follows

from the boundary conditions in Eq. (20). The ground state

is given by populating all negative energy modes ℜðϵpÞ ¼
cos (2πp=ðLþ 1Þ) ≤ 0 and, therefore,

−e
open
0

¼ 1

π
þ 1

πL
þ π

24L2
þOðL−3Þ: ð23Þ

For the lowest energy gap one finds

ℜðδopenÞ ¼ 2π

L
þOðL−2Þ ð24Þ

as in the periodic system at half-filling where vF ¼ 1.

The stationary density of the conditioned process is

constant with ρn ¼ 1=2 as one would expect for maximal

current or activity. For the dynamical structure function one

can repeat the analysis of the periodic system due to the

pseudoperiodicity of Eq. (21). However, we need the full

Wick theorem since the second part is nonzero due to the

lack of particle number conservation. After some compu-

tations using the Bogolyubov transformation (21) and

taking the thermodynamic limit one arrives at

Sopenðn;m; tÞ ¼ S1=2ðn −m; tÞ − S1=2ðnþm; tÞ: ð25Þ

Conformal invariance.—The ground state of the

Hermitian spin-1=2 Heisenberg quantum chain is known

to be described by CFTwith central charge c ¼ 1 [6,7,23].

Intriguingly, the ground state results [Eqs. (8) and (9)] for

the periodic system and Eqs. (23) and (24) for the open

system can also be understood in terms of CFT even though

Eqs. (6) and (20) are strongly non-Hermitian. After

rescaling time by the Fermi velocity vF (identified as such

by the computation of the dynamical structure function)

and using finite-size scaling theory for conformal invari-

ance [24,25] the leading corrections (8) and (23) to the

ground state energy correspond to central charge c ¼ 1 of

the Virasoro algebra. The real part 2πx=L of the lowest

energy gap corresponds to the lowest critical bulk exponent

x ¼ 1 of a primary field of the corresponding CFT for the

periodic case and x ¼ 2 for the open boundary conditions,

in complete analogy to the CFT describing the Hermitian

XX chain at half-filling ρ ¼ 1=2. The non-Hermitian nature

of the time evolution enters only through the imaginary part

of the energy gap, which yields the collective velocity vc ¼
cos ðπρÞ and the oscillation frequency ω ¼ sin ðπρÞ.
The dynamical structure function can be understood in

terms of CFT by adapting the standard splitting of the free-

fermion operators cnðtÞ into right movers (with positive

momentum) and left movers (with negative momentum)

[15] to the non-Hermitian scenario. With φðn; tÞ ¼ kFn −

ℑðϵkFÞt and ε ¼ ℜðϵkFÞ this yields

cnðtÞ ¼
1
ffiffiffiffiffiffi

2π
p ½e−iφðn;tÞþεtψ ~nðtÞ þ eiφðn;tÞ−εtψ̄ ~nðtÞ� ð26Þ

and similar for c†nðtÞ with Galilei-transformed coordinate

~n ¼ n − vct. For large n and t the two-point functions are
predicted from CFT with central charge c ¼ 1 to be

hψ†ðzÞψðz0Þi ¼ 1

z − z0
; hψ̄†ðz̄Þψ̄ðz̄0Þi ¼ 1

z̄ − z̄0
: ð27Þ

This then leads to the dynamical structure function with the

static exponent K ¼ 1 that we computed. The same scaling

form (1) with a nonuniversal exponent K > 1 can be

obtained via bosonization [15] for nonmaximal speed-

ing-up, i.e., Δ > 0. Since t is to be understood in units

of the lattice spacing, the oscillating part thus becomes

irrelevant even without spatial coarse-graining. The

dynamical structure function for open boundaries can be

understood from boundary conformal field theory with

reflecting boundary conditions which yields nonvanishing

correlators between the right and left movers which are of

the form similar to Eq. (27), but with a 1=ðzþ z0Þ
dependence coming from reflection.

From Eq. (3) we read off the remarkable fact that at a

critical activity parameter,

μc ¼ − ln

�

cosh ðf þ λÞ
cosh f

�

; ð28Þ

the conditioned generator becomes the generator of an

unconditioned ASEP with hopping asymmetry f0 ¼ f þ λ.

Then, for μ < μc one has phase separated atypical behavior

as shown in Ref. [14] for f ¼ λ ¼ 0 and in Ref. [19] for

f ¼ 0, whereas for μ > μc one has—as elaborated above—

conformal invariance; see Fig. 2. On the phase transition

line μ ¼ μc one has typical stochastic dynamics with z ¼ 2

for λ ¼ −f (symmetric simple exclusion process) and

z ¼ 3=2 for λ ≠ −f (ASEP), as predicted by nonlinear

fluctuating hydrodynamics [26] for one-dimensional driven

systems with one conservation law.

The same CFTwith central charge c ¼ 1 describes other

quantum spin chains such as the spin-s Heisenberg chain in
the gapless regime [27,28] with anisotropy 0 ≤ Δ < 1

whose non-Hermitian generalization maps to the partial

exclusion process [29] conditioned on an atypical current

and activity. One has an energy gap for integer spin

(Haldane conjecture) only for negative Δ. In fact, it opens

up exactly at Δ ¼ 0 where the mapping to stochastic

dynamics gets lost, as positivity of the transition rates

impliesΔ ≥ 0. The energy gap is finite in the ferromagnetic

regime Δ > 1, corresponding to phase separation in the

particle system. These observations support the notion of

universality of Eq. (1) and also confirm the dynamical

phase transition to a phase-separated regime at low current

or activity.
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Conclusions.—The phase diagram of atypical behavior

in d-dimensional diffusive systems far from thermal equi-

librium can be explored by studying the critical behavior of

dþ 1-dimensional equilibrium models. In 1þ 1 dimension

with a single conserved species there is a dynamical phase

transition from a dynamically critical conformally invariant

regime for atypically fast dynamics through a phase

transition line corresponding to typical dynamics in the

diffusive or Kardar-Parisi-Zhang universality class to a

phase-separated regime of atypically slow dynamics. Thus,

large fluctuations in driven diffusive systems cannot be

understood by simple upscaling, but are sustained by

spatiotemporal correlations that are qualitatively different

from typical behavior. The dynamical phase transition can

be studied further in terms of the large deviation function

ϵ0ðf; λ; μÞ. For the SSEP (f ¼ 0) we obtain from Ref. [30]

that ∂2
μϵð0; 0; μÞ diverges ∝ μ−1=2 at the critical point μ ¼ 0

(for fixed λ ¼ 0), while ∂2

λϵð0; λ; 0Þ is continuous at λ ¼ 0

(for fixed μ ¼ 0), but ∂3

λϵð0; λ; 0Þ has a jump discontinuity.

For systems with more than one conservation law the

scenario is more complex. It has been shown recently that

typical behavior is described by dynamical critical expo-

nents zi > 1 given by the ratios of neighboring Fibonacci

numbers Fiþ1=Fi, starting with F2 ¼ 1 and F3 ¼ 2 [31].

Also, quantum systems for n conserved species that would

describe the critical behavior in the regime of high current

or activity may be governed by a CFT with central charge

c > 1. For low current or activity one still expects phase

separation, which, however, may exhibit richer behavior

than for n ¼ 1.
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FIG. 2. Phase diagram of the conditioned ASEP as a function of

current parameter λ and the activity parameter μ for positive drive

f > 0. The exact phase transition line that separates the con-

formally invariant regime CFT from the phase-separated regime

PS is given by Eq. (28).
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