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2Departamento de Estatı́stica, Universidade Federal de São Carlos, Rodovia Washington Luiz,
Km 235, 13565-905 São Carlos, São Paulo, Brazil
3Institute of Complex Systems II, Forschungszentrum Jülich, 52425 Jülich, Germany
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We study the so-called elephant random walk (ERW) which is a non-Markovian

discrete-time random walk on Zwith unbounded memory which exhibits a phase tran-

sition from a diffusive to superdiffusive behavior. We prove a law of large numbers and

a central limit theorem. Remarkably the central limit theorem applies not only to the

diffusive regime but also to the phase transition point which is superdiffusive. Inside the

superdiffusive regime, the ERW converges to a non-degenerate random variable which

is not normal. We also obtain explicit expressions for the correlations of increments

of the ERW. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983566]

I. INTRODUCTION

In this paper, we consider a model presented in Ref. 9, the so-called elephant random walk (ERW).

This is a discrete-time random walk Xn on Z with unbounded memory whose random increments at

each time step depend on the whole history of the process. This model is a rare example of a non-

Markovian process for which exact results on the moments of Xn are available.2,8,9 Also some large

deviation results have been obtained.5 Significantly, there is a phase transition from a diffusive to

superdiffusive behavior as a function of a memory parameter p (defined below) at a critical value pc.

A modified ERW was shown to exhibit also subdiffusion.6 Recently a surprising connection between

the ERW and bond percolation on random recursive trees has been found.7

An open question that has remained is the actual probability distribution of Xn in the original

ERW. Initially it was suggested that on large scales the probability density is Gaussian, obeying

the Fokker-Planck equation with the time-dependent drift term.9 Later it was conjectured that the

distribution is Gaussian in the diffusive regime, but not in the superdiffusive regime.2,8 Here we

address this problem. We prove rigorously a law of large numbers (Theorem 1) for any non-trivial

value of the memory parameter and a central limit theorem (Theorem 2) that is valid both in the

diffusive regime and at the critical value pc, where the ERW is already superdiffusive. Inside the

superdiffusive regime, Xn converges to a non-degenerate but non-normal random variable (Theorem

3). Some further insight is obtained by a precise result on the correlations between the random

increments (Theorem 4).

The approach we use to study the limiting behavior of the ERW involves martingale techniques4,10

and may be related to the study of limit theorems for a class of correlated Bernoulli processes. We refer

the reader interested in this topic to the work of Wu et al.11 and references therein. In this context, it

is worth mentioning the recent work of González-Navarrete and Lambert3 where the authors propose

an approach to construct and study Bernoulli sequences combining dependence and independence

periods.

a)cristian.coletti@ufabc.edu.br
b)gava@ufscar.br
c)g.schuetz@fz-juelich.de
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The paper is organized as follows. In Sec. II, we define the process and present our main results

which are proved in Section III. In Subsection III A, we derive some auxiliary results that are used

in the proofs of Subsection III B. We mention that upon completion of this work related results on

the ERW by Baur and Bertoin appeared in arXiv (meanwhile published in Phys. Rev. E1) where the

authors prove similar results, using a mapping between the ERW and an urn model.

II. DEFINITION OF THE ERW AND MAIN RESULTS

The ERW is defined as follows. The walk starts at a specific point X0 at time n = 0. At each

discrete time step, the elephant moves one step to the right or to the left, respectively, so

Xn+1 =Xn + ηn+1,

where ηn+1 =±1 is a random variable. The memory consists of the set of random variables ηn′ at

previous time steps, which the elephant remembers as follows:

(D1) At time n + 1, a number n′ from the set {1, 2, . . . , n} is chosen at random with probability

1/n.

(D2) ηn+1 is determined stochastically by the rule

ηn+1 = ηn′ with probability p and ηn+1 =−ηn′ with probability 1 − p.

(D3) The elephant starting at X0 moves to the right with probability q and to the left with probability

1 � q, i.e.,

η1 = 1 with probability q and η1 =−1 with probability 1 − q.

It is obvious from the definition that

Xn =X0 +

n
∑

k=1

ηk .

From now on we consider X0 = 0. Therefore, Xn =

n
∑

k=1

ηk . A simple computation, using the total

probability law, yields

P[ηn+1 = η |η1, . . . , ηn]=
1

2n

n
∑

k=1

[

1 + (2p − 1) ηkη
]

for n ≥ 1, (1)

where η =±1 (see Ref. 9 for details). For n = 0, we get in accordance with rule (D3),

P[η1 = η]=
1

2

[

1 + (2q − 1) η
]

and

E[η1]= 2q − 1.

The conditional expectation of the increment ηn+1 given its previous history is given by

E[ηn+1 |η1, . . . , ηn]= (2p − 1)
Xn

n
for n ≥ 2. (2)

In Ref. 9, Schütz and Trimper showed that

E[Xn]= (2q − 1)
Γ(n + (2p − 1))

Γ(2p)Γ(n)
∼ 2q − 1

Γ(2p)
n2p−1 for n≫ 1. (3)

Therefore,

E[ηn+1]∼
(2p − 1) (2q − 1)

Γ(2p)
n2(p−1). (4)

Now we state the main results.
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Theorem 1. Let (Xn)n≥1 be the elephant random walk. Then

lim
n→∞

Xn − E[Xn]

n
= 0 a.s.

for any value of q and p ∈ [0, 1).

Remark 1. If p = 1, which is not covered by the law of large numbers of Theorem 1, the ERW is

trivial since by definition of the process one then has ηn = η1 for all n ≥ 1. Hence Xn/n= η1 reduces

to a binary random variable.

Interestingly, as the next two theorems demonstrate, the non-Markovian nature of the ERW is

somewhat disguised for p ≤ 3/4, but shows up for p> 3/4.

Theorem 2. Let (Xn)n≥1 be the elephant random walk and let p ≤ 3/4.

(a) If p< 3/4, then

Xn −
2q − 1

Γ(2p)
n2p−1

√

n

3 − 4p

D−−→N(0, 1).

(b) If p = 3/4, then

Xn −
2q − 1

Γ(3/2)
n1/2

√
n ln n

D−−→N(0, 1).

Theorem 3. Let (Xn)n≥1 be the elephant random walk. If 3/4< p ≤ 1, then

Xn

n2p−1Γ(2p)−1
− (2q − 1)→M a.s.,

where M is a non-degenerate mean-zero random variable which is not normally distributed.

The fact that, for p> 3/4, the rescaled elephant random walk does not converge in distribution to

a random variable with normal distribution suggests that cross-correlations between the increments

ηn are in some sense “too strong.” The following theorem quantifies these correlations.

Theorem 4. Let (Xn)n≥1 be the elephant random walk with q = 1/2 and 0 ≤ p ≤ 1 and define

F(n) :=
2p − 1

3 − 4p

(

2(1 − p)

n
− (2p − 1)Γ(n + 4p − 3)

Γ(4p − 2)n!

)

.

Then, E[ηn]= 0 and

E[ηnηn+k]=
n!Γ(2p + n + k − 2)

(n + k − 1)!Γ(2p − 1 + n)
F(n)

for all n ≥ 1 and k ≥ 1.

Remark 2. For p = 3/4 one has

F(n)=
1

2n
*,1 +

1

2

n−1
∑

m=1

1

m
+- .

For k, n→∞ with x:= k/n fixed, the correlation function has the form

E[ηnηn+k]∼ (1 + x)−2(1−p)F(n),
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where F(n) decays algebraically except at the transition point p = 3/4. In the various regimes, Stirling’s

formula for the Gamma-function gives

F(n)∼



2(2p − 1)(1 − p)

3 − 4p
n−1 p< 3/4

ln n

4n
p= 3/4

(2p − 1)2

(4p − 3)Γ(4p − 2)
n−4(1−p) p> 3/4.

It appears that the transition at p = 3/4 is driven by the strength of the correlations at time step n

rather than by their decay with the time-lag k between increments.

III. PROOFS

In order to prove the limit theorems for the ERW stated in Section II, we use results from

martingale theory proved in Refs. 3 and 10. The ideas employed here to prove Theorems 1 and 2 can

also be found in the work of Wu et al.11 in a different context.

A. Auxiliary results

In this subsection, we present some results that will be used in Subsection III B where we prove

Theorems 1-4.

Put

a1 = 1 and an =

n−1
∏

j=1

(

1 +
(2p − 1)

j

)

for n ≥ 2.

Define the filtration Fn =σ(η1, . . . , ηn) and Mn =
Xn−E[Xn]

an
for n ≥ 1. We claim that {Mn}n≥1 is a

martingale with respect to {Fn}n≥1, for

E[Mn+1 |Fn]=
(Xn − E[Xn])

an+1

+
E[ηn+1 |Fn] − E[ηn+1]

an+1

=

(Xn − E[Xn])

an+1

+
(2p − 1)

Xn

n
− (2p − 1)

E[Xn]
n

an+1

=

(Xn − E[Xn])

an+1

+

(2p−1)

n
(Xn − E[Xn])

an+1

= (Xn − E[Xn])

(

1 +
(2p−1)

n

)

an+1

=Mn.

Before proving the next lemma, let us make an important remark on an. Using the gamma

function, we can rewrite an in the following way:

an =
Γ(n + 2p − 1)

Γ(n)Γ(2p)
∼ n2p−1

Γ(2p)
as n→∞. (5)

Notice that an→∞ as n→∞ if p> 1/2, an = 1 for n ≥ 1 if p = 1/2, and an→ 0 if p< 1/2.

Lemma 1. The series
∞
∑

n=1

1

a2
n

converges if and only if p> 3/4.

Proof. Let bn =
1

a2
n

and assume that p, 3/4. Then,

n

(

1 − bn

bn+1

)

=

2(2p − 1) +
(2p−1)2

n

1 + 2
(2p−1)

n
+

(2p−1)2

n2

.
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Therefore,

R := lim
n→+∞

n

(

1 − bn

bn+1

)

= 4p − 2.

By the Raabe criteria, the series is convergent if R > 1 and it is divergent if R < 1. Note that R > 1

if and only if p> 3
4

and R < 1 if and only if p< 3
4
.

Assume now that p= 3
4
. Since 2p − 1= 1/2 > 0, it follows by (5) that

an =

n−1
∏

j=1

(

1 +
1/2

j

)

∼ n1/2

√
π/4

.

Thence 1/a2
n ≥ 1

2n
for n large enough and

∞
∑

n=2

1

a2
n

diverges. �

Let (Dn)n≥1 be the martingale differences defined by D1 = M1 and, for n ≥ 2, Dn =Mn −Mn−1.

Observe that

Dj =
Xj − E[Xj]

aj

−
Xj−1 − E[Xj−1]

aj−1

=

ηj − E[ηj]

aj

−

(

Xj−1 − E[Xj−1]
)

j − 1

2p − 1

aj

.

Furthermore, since the increments ηj’s are uniformly bounded, it is trivial to see that

|Dj | ≤
4

aj

. (6)

We state without proof the Kronecker lemma.

Lemma 2. Let (xn)n≥1 and (bn)n≥1 be sequences of real numbers such that 0 < bnր+∞. If
∑

k xk/bk converges, then lim
n→+∞

∑n
k=1

xk

bn
= 0.

B. Proofs of the main results

1. Strong law of large numbers

Proof of Theorem 1. First observe that

an

n
=

1

n

n−1
∏

j=1

(

1 +
2p − 1

j

)

=

n−1
∏

j=1

j + 2p − 1

j + 1
=

n−1
∏

j=1

(

1 − 2(1 − p)

j + 1

)

, (7)

where 0 ≤ j+2p−1

j+1
≤ 1. Observe that

∞
∑

j=1

2(1−p)

j+1
=∞ implies that lim

n→+∞
an

n
= 0. Furthermore, it follows

from (7) and the fact that 0 ≤ j+2p−1

j+1
≤ 1 that (an/n)n≥1 is a non-increasing sequence.

Define Nj =
aj

j
Dj. By (6), we may conclude that (Nj)j≥1

is a sequence of martingale differences

such that

+∞
∑

j=1

E[N2
j |Fj−1] ≤

+∞
∑

j=1

42

j2
< +∞ a.s.

Now, Theorem 2.17 in Ref. 3 implies that
+∞
∑

j=1

Nj converges a.s. Since n/anր∞, a direct application

of Lemma 2 gives

an

n

n
∑

j=1

Dj =
an

n
Mn→ 0 a.s.
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Next, note that

Xn − E[Xn]

n
=

an

n
Mn,

i.e., the law of large numbers holds for Xn. �

Corollary 1. Let (Xn)n≥1 be the elephant random walk. Then

lim
n→∞

Xn

n
= 0 a.s.

for any value of q and p ∈ [0, 1).

Proof. It follows from (3) that
E[Xn]

n
∼ 2q−1

Γ(2p)
n2(p−1), which in turn goes to 0 as n→∞, and the

claim follows. �

C. Central limit theorem

Proof of Theorem 2. Define

s2
1 = q(1 − q) and s2

n := q(1 − q) +

n
∑

j=2

1

a2
j

for n ≥ 2.

Before proving the results, we need to say that both claims in Theorem 2 amount to show that

Xn − E[Xn]

ansn

D−−→N(0, 1). (8)

Indeed, we will show that (8) holds. First recall that E(Xn)∼ (2q− 1)n2p−1/Γ(2p), by (3). Combining

Lemma 1 and (5) we get

s2
n ∼ Γ(2p)2 n3−4p

3 − 4p
, if p< 3/4,

s2
n ∼ Γ(3/2)2 ln n, if p= 3/4,

which in turn implies that ansn ∼
√

n ln n, if p = 3/4, and ansn ∼
√

n/(3 − 4p), if p< 3/4.

We now turn our attention to the proof of (8). We will verify the two conditions of Corollary 3.1

of Ref. 3 in order to get our result.

We begin by checking the conditional Lindeberg condition. Let Dnj =
Dj

sn
for 1 ≤ j ≤ n. Given

ε > 0, we need to prove that

n
∑

j=1

E(D2
njI(|Dnj | > ε)|Fj−1)→ 0 a.s.. (9)

If p ∈ [1/2, 3/4], then an ≥ 1 and sn→∞. Next note that {|Dnj | > ε} ⊂ { 4
sn
> ε}, but the last set is

empty for n large enough, so (9) holds. If p< 1/2, observe that limn→∞ an sn =∞ and a−1
j
≤ a−1

n for

j = 1, . . . , n. Then it is easy to see that {|Dnj | > ε} ⊂ { 4
ansn
> ε}, and again the latter set is empty for n

sufficiently large.

Next we check the conditional variance condition. Since

∑n
j=1

Dj

sn
=

Sn −E[Sn]
ansn

, we must estimate

E[D2
j
|Fj−1]. Observe that

D2
j =

1

a2
j

*..,
(

1 − 2E[ηj]ηj + E2[ηj]
)

+
*.,
(

Xj−1 − E[Xj−1]
)

j − 1

+/-
2

(2p − 1)2+//-
− 2

a2
j

*.,
(

ηj − E[ηj]
) *.,

(

Xj−1 − E[Xj−1]
)

j − 1

+/- (2p − 1)
+/- ,
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since η2
j
= 1.

It follows from the law of large numbers for Xn that

E


1

a2
j

*.,
(

Xj−1 − E[Xj−1]
)

j − 1

+/-
2

(2p − 1)2 |Fj−1


and

E


1

a2
j

*.,
(

ηj − E[ηj]
) *.,

(

Xj−1 − E[Xj−1]
)

j − 1

+/- (2p − 1)
+/- |Fj−1


are o

(

1

a2
j

)

. Therefore, in order to obtain the asymptotic behavior of E
[
D2

j
|Fj−1

]
, we need to study

the behavior of 1

a2
j

(E[(1 − 2E[ηj]ηj + E2[ηj])|Fj−1]).

It follows from (1) and (4) that, for j ≥ 2,

1

a2
j

E

[(
1 − 2E[ηj]ηj + E2[ηj]

)

|Fj−1

]
∼ 1

a2
j

(

1 − 2
(2p − 1)(2q − 1)

Γ(2p)(j − 1)2(1−p)

(2p − 1)Xj−1

j − 1

)

+
1

a2
j

(

(2p − 1)(2q − 1)

Γ(2p)(j − 1)2(1−p)

)2

=

1

a2
j

+ o *,
1

a2
j

+- .

Therefore, for j ≥ 2 we have that

E

[
D2

j |Fj−1

]
=

1

a2
j

+ o *,
1

a2
j

+- . (10)

Finally, for j = 1, we have that

E

[
D2

1 |F0

]
=

1

a2
1

q(1 − q), (11)

where a1 = 1. Recall that s2
1
= q(1 − q) and s2

n := q(1 − q) +
∑n

j=2
1

a2
j

for n ≥ 2. From Lemma 1, we

have that sn→∞ as n→∞ if and only if p ≤ 3/4. From this fact, (10), (11), and Theorem 1, we may

conclude that

1

s2
n

n
∑

j=1

E[D2
j |Fj−1]

a.s−−→ 1.

Therefore, by Corollary 3.1 in Ref. 3 we conclude that

n
∑

j=1

Dnj =
Xn − E[Xn]

ansn

D−−→N(0, 1).

�

D. Almost sure convergence for p > 3
4

Proof of Theorem 3. We begin with an elementary observation. It follows from (3) and (5) that

E(Xn)= (2q − 1)an, where an ∼ n2p−1/Γ(2p). Lemma 1 says that if p> 3
4
, then

∞
∑

n=1

1

a2
n
<∞. Since

|Dj | ≤ 4
aj

(see (6)), then Theorem 12.1 in Ref. 10 implies that Mn =

n
∑

j=1

Dj =
Xn −E[Xn]

an
→M a.s. and in

L2. These results and E(Mn)= 0 together imply that

|E(M)| = |E(M −Mn)| ≤ E(|M −Mn |) ≤ E(|M −Mn |2)
1/2→ 0 as n→∞.
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Furthermore, the fact that (Mn)n≥1 is a bounded martingale in L2 plus its a.s. convergence to M imply

that

Var(M)= lim
n→∞

Var(Mn)=

∞
∑

j=1

E(D2
j )> 0.

Then, M is not a degenerate random variable. The claim that M is not normal follows from the

explicit form of the skewness and kurtosis of the distribution of Xn obtained by exact computation in

Ref. 8. �

E. Correlations

Proof of Theorem 4. To compute the correlation function E[ηn+kηn] for n ≥ 1 and k ≥ 1, we

introduce the auxiliary quantity Hk = (n + k − 1)E[ηn+kXn]. It follows from (2) that

Hk+1 =

(

1 +
2p − 1

n + k − 1

)

Hk , H1 = (2p − 1)E[X2
n ],

which yields by induction

Hk =
(n − 1)!Γ(2p + n + k − 2)

(n + k − 2)!Γ(2p − 1 + n)
H1.

Therefore,

E[ηn+kXn]=
n!Γ(2p + n + k − 2)

(n + k − 1)!Γ(2p − 1 + n)
E[ηn+1Xn]

= (2p − 1)
(n − 1)!Γ(2p + n + k − 2)

(n + k − 1)!Γ(2p − 1 + n)
E[X2

n ].

Subtracting E[ηn+kXn−1] yields E[ηn+kηn] in the form stated in the theorem with

F(n)=
2p − 1

n

[
E[X2

n ] −
(

1 +
2p − 1

n − 1

)

E[X2
n−1]

]
.

With the explicitly known expression9

E[X2
n ]=

n

4p − 3

(

Γ(n + 4p − 2)

Γ(4p − 2)Γ(n + 1)
− 1

)

,

we arrive at the desired result. �
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