001     841856
005     20210129232111.0
024 7 _ |a 10.1039/C7CP07441G
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a pmid:29234759
|2 pmid
024 7 _ |a WOS:000419219700029
|2 WOS
037 _ _ |a FZJ-2018-00154
082 _ _ |a 540
100 1 _ |a Gries, U. N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A SIMS study of cation and anion diffusion in tantalum oxide
260 _ _ |a Cambridge
|c 2018
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515392913_28987
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ion transport in ceramics of the low-temperature phase of tantalum pentoxide, L-Ta2O5, was examined by means of diffusion experiments and subsequent analysis of diffusion profiles with time-of-flight secondary ion mass spectrometry (ToF-SIMS). 18O/16O isotope anneals were used to investigate oxygen diffusion, and oxygen tracer diffusion coefficients were obtained for the temperature range of 623 ≤ T/K ≤ 873 at an oxygen partial pressure of pO2 = 0.2 bar and for the oxygen partial pressure range of 10−2 ≤ pO2/bar ≤ 100 at a temperature of T = 723 K. Cation diffusion in Ta2O5 was probed by using chemically similar niobium as the diffusant (in the absence of stable tantalum isotopes). Thin films of Nb2O5 were deposited onto Ta2O5 ceramics; diffusion anneals yielded niobium diffusion coefficients for the temperature range of 1073 ≤ T/K ≤ 1223 at an oxygen partial pressure of pO2 = 0.2 bar. Comparison of the measured diffusion coefficients strongly suggests that oxygen is many orders of magnitude more mobile than niobium in L-Ta2O5 at these temperatures and at pO2 = 0.2 bar. The electrical conductivity was also determined in the range 950 ≤ T/K ≤ 1200 and 10−23 ≤ pO2/bar ≤ 10−2. Considered together with the measured diffusion coefficients, the conductivity data indicate that under oxidising conditions conduction is due to oxygen ions above T = 1090–1130 K and due to electron holes below this temperature range. Point-defect models are presented that are consistent with these transport data and with conductivity data in the literature. They suggest that under oxidising conditions oxygen interstitials are the majority ionic charge carriers in L-Ta2O5. The implications for resistive switching devices are discussed.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schraknepper, H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Skaja, K.
|0 P:(DE-Juel1)145428
|b 2
700 1 _ |a Gunkel, F.
|0 P:(DE-Juel1)130677
|b 3
700 1 _ |a Hoffmann-Eifert, S.
|0 P:(DE-Juel1)130717
|b 4
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 5
700 1 _ |a De Souza, R. A.
|0 0000-0001-7721-4128
|b 6
|e Corresponding author
773 _ _ |a 10.1039/C7CP07441G
|g Vol. 20, no. 2, p. 989 - 996
|0 PERI:(DE-600)1476244-4
|n 2
|p 989 - 996
|t Physical chemistry, chemical physics
|v 20
|y 2018
|x 1463-9084
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841856
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21