000841874 001__ 841874 000841874 005__ 20250129092453.0 000841874 037__ $$aFZJ-2018-00171 000841874 041__ $$aEnglish 000841874 1001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b0$$eCorresponding author 000841874 1112_ $$aInternational Workshop On Silicon Quantum Electronics$$cHillsboro$$d2017-08-18 - 2017-08-21$$wUnited States of America 000841874 245__ $$aInterfacing qubits: Cryogenic control electronics 000841874 260__ $$c2017 000841874 3367_ $$033$$2EndNote$$aConference Paper 000841874 3367_ $$2DataCite$$aOther 000841874 3367_ $$2BibTeX$$aINPROCEEDINGS 000841874 3367_ $$2DRIVER$$aconferenceObject 000841874 3367_ $$2ORCID$$aLECTURE_SPEECH 000841874 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1516287388_19711$$xAfter Call 000841874 520__ $$aWe compare our approach of placing the electronics as close to the qubits as possible with other approaches like the cryogenic use of FPGAs or scaling of room temperature electronics [3] [4]. Especially the connectivity towards room temperature is a key aspect and will be examined in detail. Next to connectivity, other important challenges for the control electronics are area demand and power consumption. Both have been investigated and the figures of merit of different implementations will be shown. The placement of the electronics next to the qubits into the cryogenic environment shows additional advantages like improved noise behaviour. We will show how this aspect influences the choice of component architectures.For demonstration of the suitability of our approach first results for a modelled electronic system will be presented. [1] IBM Builds Its Most Powerful Universal Quantum Computing Processors. 000841874 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0 000841874 536__ $$0G:(DE-HGF)IVF-20140101$$aIVF - Impuls- und Vernetzungsfonds (IVF-20140101)$$cIVF-20140101$$x1 000841874 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2 000841874 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b1 000841874 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b2 000841874 909CO $$ooai:juser.fz-juelich.de:841874$$pVDB 000841874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b0$$kFZJ 000841874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b1$$kFZJ 000841874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b2$$kFZJ 000841874 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000841874 9141_ $$y2017 000841874 920__ $$lyes 000841874 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0 000841874 980__ $$aconf 000841874 980__ $$aVDB 000841874 980__ $$aI:(DE-Juel1)ZEA-2-20090406 000841874 980__ $$aUNRESTRICTED 000841874 981__ $$aI:(DE-Juel1)PGI-4-20110106