000841875 001__ 841875
000841875 005__ 20250129092453.0
000841875 0247_ $$2Handle$$a2128/16618
000841875 037__ $$aFZJ-2018-00172
000841875 041__ $$aEnglish
000841875 1001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b0$$eCorresponding author$$ufzj
000841875 1112_ $$aInternational Workshop on Silicon Quantum Electronics$$cHillsboro$$d2017-08-18 - 2017-08-21$$wUSA
000841875 245__ $$aInvestigating CMOS Based Local Bias Voltage Generation for Solid-State Qubit Potential Well Creation
000841875 260__ $$c2017
000841875 3367_ $$033$$2EndNote$$aConference Paper
000841875 3367_ $$2BibTeX$$aINPROCEEDINGS
000841875 3367_ $$2DRIVER$$aconferenceObject
000841875 3367_ $$2ORCID$$aCONFERENCE_POSTER
000841875 3367_ $$2DataCite$$aOutput Types/Conference Poster
000841875 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1516288514_19711$$xAfter Call
000841875 520__ $$aOperation of a general purpose Quantum Computer requires millions of physical Qubits [1]. In order to reach this number a truly scalable electrical control approach and a corresponding rise in control and read-out capabilities will be necessary. As interfacing more and more Qubits is required, a natural approach is to integrate as much control and read-out capability as possible close to the Qubits. Therefore, it seems reasonable to use (semiconductor based) integrated circuits (ICs) located in the same cryogenic environment as the Qubits inside a dilution refrigerator. This gives rise to highly specific requirements and challenges calling for novel circuit approaches and architectures as well as application specific designs [2]. A proof of concept IC implementation is ongoing in order to demonstrate solid-state Qubit control by an adjacent placed CMOS Chip in the temperature regime around 100 mK using a commercial 65 nm technology. One major challenge is the broadly unexplored device behavior and lack of modeling of classical bulk CMOS processes at cryogenic temperatures below the freeze-out point of dopants (<30 K) [3]. Furthermore, today’s low cooling power budget of dilution refrigerators at the lowest sub 1 K temperature stage of about 1 mW poses an additional challenge to the system solution and circuit design. First IC design approaches will be shown utilizing a 13 bit charge-redistribution DAC topology with 20 multiplexed output channels to deliver extremely stable DC output voltages (1 V dynamic range; voltage uncertainties of less than 30 µV) to form the potential well for gate defined lateral quantum dots (e.g. GaAs or SiGe based). First simulation results indicate the possibility of operating multiple GaAs based Spin Qubits (each requiring up to 10 distinct DC voltages) in parallel within the given cooling power budget. Promising early stage results of noise performance simulations are discussed and the next required steps towards a fully integrated proof-of-concept setup are introduced.[1] R. Van Meter and C. Horsman, “A Blueprint for Building a Quantum Computer,” in Communications of the ACM, vol. 56, no. 10, pp. 84-93, October 2013.[2] B. Okcan, G. Gielen and C. Van Hoof, “A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K,” in Review of Scientific Instruments, vol. 83, no. 2, p. 024708, 2012.[3] Y. Creten, P. Merken, W. Sansen, R. P. Mertens and C. Van Hoof, "An 8-Bit Flash Analog-to-Digital Converter in Standard CMOS Technology Functional From 4.2 K to 300 K," in IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 2019-2025, July 2009.
000841875 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000841875 536__ $$0G:(DE-HGF)IVF-20140101$$aIVF - Impuls- und Vernetzungsfonds (IVF-20140101)$$cIVF-20140101$$x1
000841875 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000841875 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b1$$ufzj
000841875 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b2$$ufzj
000841875 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b3$$ufzj
000841875 7001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b4$$ufzj
000841875 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5$$ufzj
000841875 7001_ $$0P:(DE-HGF)0$$aHeinen, Stefan$$b6
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.pdf$$yOpenAccess
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.gif?subformat=icon$$xicon$$yOpenAccess
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841875 8564_ $$uhttps://juser.fz-juelich.de/record/841875/files/Poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841875 909CO $$ooai:juser.fz-juelich.de:841875$$pdriver$$pVDB$$popen_access$$popenaire
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b0$$kFZJ
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b1$$kFZJ
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b2$$kFZJ
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b3$$kFZJ
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b4$$kFZJ
000841875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b5$$kFZJ
000841875 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000841875 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000841875 9141_ $$y2017
000841875 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841875 920__ $$lyes
000841875 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000841875 9801_ $$aFullTexts
000841875 980__ $$aposter
000841875 980__ $$aVDB
000841875 980__ $$aUNRESTRICTED
000841875 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000841875 981__ $$aI:(DE-Juel1)PGI-4-20110106