001     841875
005     20250129092453.0
024 7 _ |a 2128/16618
|2 Handle
037 _ _ |a FZJ-2018-00172
041 _ _ |a English
100 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Workshop on Silicon Quantum Electronics
|c Hillsboro
|d 2017-08-18 - 2017-08-21
|w USA
245 _ _ |a Investigating CMOS Based Local Bias Voltage Generation for Solid-State Qubit Potential Well Creation
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1516288514_19711
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Operation of a general purpose Quantum Computer requires millions of physical Qubits [1]. In order to reach this number a truly scalable electrical control approach and a corresponding rise in control and read-out capabilities will be necessary. As interfacing more and more Qubits is required, a natural approach is to integrate as much control and read-out capability as possible close to the Qubits. Therefore, it seems reasonable to use (semiconductor based) integrated circuits (ICs) located in the same cryogenic environment as the Qubits inside a dilution refrigerator. This gives rise to highly specific requirements and challenges calling for novel circuit approaches and architectures as well as application specific designs [2]. A proof of concept IC implementation is ongoing in order to demonstrate solid-state Qubit control by an adjacent placed CMOS Chip in the temperature regime around 100 mK using a commercial 65 nm technology. One major challenge is the broadly unexplored device behavior and lack of modeling of classical bulk CMOS processes at cryogenic temperatures below the freeze-out point of dopants (<30 K) [3]. Furthermore, today’s low cooling power budget of dilution refrigerators at the lowest sub 1 K temperature stage of about 1 mW poses an additional challenge to the system solution and circuit design. First IC design approaches will be shown utilizing a 13 bit charge-redistribution DAC topology with 20 multiplexed output channels to deliver extremely stable DC output voltages (1 V dynamic range; voltage uncertainties of less than 30 µV) to form the potential well for gate defined lateral quantum dots (e.g. GaAs or SiGe based). First simulation results indicate the possibility of operating multiple GaAs based Spin Qubits (each requiring up to 10 distinct DC voltages) in parallel within the given cooling power budget. Promising early stage results of noise performance simulations are discussed and the next required steps towards a fully integrated proof-of-concept setup are introduced.[1] R. Van Meter and C. Horsman, “A Blueprint for Building a Quantum Computer,” in Communications of the ACM, vol. 56, no. 10, pp. 84-93, October 2013.[2] B. Okcan, G. Gielen and C. Van Hoof, “A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K,” in Review of Scientific Instruments, vol. 83, no. 2, p. 024708, 2012.[3] Y. Creten, P. Merken, W. Sansen, R. P. Mertens and C. Van Hoof, "An 8-Bit Flash Analog-to-Digital Converter in Standard CMOS Technology Functional From 4.2 K to 300 K," in IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 2019-2025, July 2009.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a IVF - Impuls- und Vernetzungsfonds (IVF-20140101)
|0 G:(DE-HGF)IVF-20140101
|c IVF-20140101
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Degenhardt, Carsten
|0 P:(DE-Juel1)167475
|b 1
|u fzj
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 2
|u fzj
700 1 _ |a Kruth, Andre
|0 P:(DE-Juel1)156521
|b 3
|u fzj
700 1 _ |a Nielinger, Dennis
|0 P:(DE-Juel1)168167
|b 4
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 5
|u fzj
700 1 _ |a Heinen, Stefan
|0 P:(DE-HGF)0
|b 6
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841875/files/Poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/841875/files/Poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/841875/files/Poster.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841875/files/Poster.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841875
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156521
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168167
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142562
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21