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52425 Jülich, Germany
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In our publication entitled “Low vibration laboratory

with a single-stage vibration isolation for microscopy appli-

cations”1 we have erroneously labeled the measured spectrum

Nspec of the vibrations as the spectral density NPSD ≡ Nv of the

vibrations in our laboratory . Due to this, the measured vibra-

tion levels (spectral densities) shown in Figs. 3 and 5–7 have

to be multiplied by a factor of 5.9. The corrected figures are

shown in Figs. 1–5. Note that the magenta curve in Fig. 3 of

Ref. 1 is not shifted because it was measured with a bandwidth

of 1 Hz.

While experts in spectral analysis will be aware of the

difference between a spectrum and the spectral density, sci-

entists using spectral analysis only occasionally may not be

aware of the difference between both. Thus we discuss, in the

following, this difference and how the two can be converted

into each other. Moreover, we discuss in which circumstances

the one or the other should be used, and how the calibration of

a spectrum or a spectral density is experimentally verified.

Nowadays, when spectrum analyzer instruments (with all

the calibration steps already included) are less frequently used

in favor of analog to digital conversion of the measured signal

followed by a subsequent software discrete Fourier transform

(DFT), the correct calibration is no more “included” by the

spectrum analyzer hardware. Since the discrete Fourier trans-

form just transforms n numbers to n new numbers, the user has

to take care about the necessary calibration steps, and errors

may occur in this calibration. While this is straightforward

in principle, it involves a number of non-trivial details. Here,

we also include the description of an experimental calibration

procedure which gives an easy cross-check for the correct cal-

ibration of the spectrum or spectral density. We realized that

the above mentioned information is not easily found in the lit-

erature, and thus this information is presented compactly here.

If a continuous signal S(t) is sampled with a sampling

frequency fsample, this signal is represented as a discrete time

series S(k/fsample). The discrete Fourier transform (DFT) of a

time series of length n is defined as

Ŝ(m)=

n−1
∑

k=0

S(k/fsample)e−2πikm/n, (1)

a)Author to whom correspondence should be addressed: b.voigtlaender@
fz-juelich.de

with m = 0, · · · , n � 1. The power spectral density (termed PSD

or N2
PSD

) is proportional to the absolute square of the discrete

Fourier transform (DFT).2 If we do not consider windowing

yet (i.e., consider a rectangular window),3,4 the single-sided

PSD results as

N2
PSD(m)=

2

fsample n

�
�
�
Ŝ(m)

�
�
�

2
, m= 0, . . ., n/2. (2)

Note that other definitions of the DFT than the one in Eq. (1)

result in other factors in Eq. (2).3 The spectral density NPSD is

the square root of the power spectral density N2
PSD

.

For a continuous signal, the power spectral density of a

signal is related, via Parseval’s identity, to the root mean square

(RMS) SRMS of the signal as

S2
RMS = lim

T→∞

1

T

∫ T

0

S2(t) dt ≡
〈

S2(t)
〉

=

∫ ∞
0

N2
PSD( f ) df . (3)

If the signal is a discrete time series, the continuous quantities

S(t) and NPSD( f ) translate to discrete values as

S(t)↔ S(k/fsample) and NPSD( f )↔NPSD(m fres), (4)

respectively, with k = 0, . . ., n � 1, and m = 0, . . ., n/2.

The width of the n frequency bins of the DFT is given by

fres = fsample/n.3 For a discrete signal, Eq. (3) translates to

S2
RMS =

1

T

n−1
∑

k=0

S2(k/fsample)/fsample =

n/2
∑

m=0

N2
PSD(m fres) fres. (5)

In the following, we consider two simple examples for

the power spectral density: a constant power spectral density

[Fig. 5(a)] and a power spectral density of a tonal sinusoidal

signal [Fig. 5(b)].

Spectral density: If the power spectral density of the signal

is considered within a certain frequency bandwidth B = f2 � f1

between f1 and f2 [as indicated by the blue shaded area in

Fig. 5(a)], the power spectral density is zero outside the range

of the bandwidth B. We assume further that fres ≪ B, which is

usually the case. If the power spectral density is constant for

the j bins between f1 and f2, the N2
PSD

in Eq. (5) can be written

in front of the sum and the sum yields j · fres = B. Thus for
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FIG. 1. Corresponds to Fig. 3 in Ref. 1. Spectral density of the RMS vibra-

tion velocity (vertical component) Nv ( f ) on the floor of the building before

any construction has been started (magenta line) compared to the RMS vibra-

tion level on the solid 200 ton solid foundation (blue line). For comparison,

Nv ( f ) curves (RMS) corresponding to different fractions of the gravitational

acceleration g are shown.

a constant PSD, Eq. (5) results in

N2
PSD =

S2
RMS

B
. (6)

If, for example, the signal is a voltage, e.g., of RMS

amplitude SRMS = 1 V and B = 100 Hz, a spectral density

of NPSD = 0.1 V/
√

Hz results. In this case, the (power) spectral

density is independent of the width of the frequency bins. This

case is desirable as the value of the (power) spectral density

has a significance independent of the width of the frequency

bins, i.e., independent of details of the sampling.

For the case of a tonal (sinusoidal) signal, the situation is

different. For the sake of simplicity, we consider cases with-

out spectral leakage present.4 Then the tonal signal is usually

located within a single non-zero frequency bin of width fres at

a frequency ft , as shown in Fig. 5(b). In this case, only one

term of the sum in Eq. (5) survives and the (power) spectral

density of this bin depends (undesirably) on the width of the

FIG. 2. Corresponds to Fig. 5 in Ref. 1. Spectral density of the RMS vibration

velocity (vertical component) for different stages of the optimization of the

vibration isolation. The initial state (blue) is characterized by a large peak at

about 3 Hz due to the Helmholtz resonance. After shortening of the hoses, the

Helmholtz resonance shifted to about 5 Hz (gray). The Helmholtz resonance

has been removed by destructive interference of standing waves using an

additional λ/4-hose (red).

FIG. 3. Corresponds to Fig. 6 in Ref. 1. Spectral density of the velocity (RMS)

measured on the floating floor in the final configuration. The vertical direc-

tion is shown in red, while the horizontal direction one is shown in gray.

The 10 ng line is shown in green.

frequency bins fres as

N2
PSD( fres)=

S2
RMS

fres

. (7)

This means that, for instance, a tonal signal with an RMS

amplitude of 1 V results in different values for the (power)

spectral density, depending on the width of the frequency

bins fres, as also shown in Fig. 5(b) for two different val-

ues of the frequency bin width fres and f ′res, respectively.

This dependence of the value of the (power) spectral density

on the frequency bin width fres, which depends on the particu-

lar length of the time series used for the DFT and the particular

sampling rate, is of course undesirable. Thus the value of the

(power) spectral density for a tonal signal has no unique signif-

icance without the knowledge of some details on the sampling

process, such as the sampling rate fsample and the length n of

the DFT.

Spectrum: A different quantity, the power spectrum N2
spec

or the spectrum Nspec, defined as

N2
spec ≡N2

PSD · fres (8)

FIG. 4. Corresponds to Fig. 7 in Ref. 1. One-third octave band analysis of the

RMS velocity 3 in the z-direction measured on the floating floor in the final

configuration. The red curve is calculated from the corresponding curve in

Fig. 3. Standards for vibration isolation of buildings (vibration criteria, VC)

are given for comparison (following IEST-RP-CC024), as well as the 10 ng

line (in terms of one-third octave bands).
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FIG. 5. (a) Case of a constant power spectral density within B (blue shaded

area). The DFT representation of the power spectral density has j (same) values

with a frequency bin width of fres = fsample/n. In this case, the power spec-

tral density is independent of the width of the frequency bin of the DFT, fres

[cf. Eq. (6)], while the power spectrum depends on the bin width [cf. Eq. (10)].

(b) Power spectral density of a tonal signal (sinusoidal), which has a nonvan-

ishing value only in one frequency bin. In this case, the DFT representation of

the power spectral density depends on the frequency bin width fres [cf. Eq. (7)],

while the power spectrum is independent of the bin width [cf. Eq. (9)].

avoids this disadvantage. When inserting Eq. (7), valid for

a tonal signal, into Eq. (8), the (power) spectrum of a tonal

signal turns out to be independent of the width of the frequency

bin as

N2
spec = S2

RMS. (9)

As Eq. (9) shows, the value of the spectrum is equal to the

RMS amplitude of the tonal (sinusoidal) signal, Nspec = SRMS

(e.g., 1 V).

However, undesirably for a signal of constant (power)

spectral density, the spectrum Nspec depends on the width of

the frequency bin fres, as evident when inserting Eq. (6) into

Eq. (8), resulting in

N2
spec =

S2
RMS

B
fres. (10)

In conclusion, neither the (power) spectral density nor

the (power) spectrum delivers a value which is independent

of the frequency bin for a tonal signal as well as for a sig-

nal with constant PSD (representative of a broad band signal

with a relatively flat PSD). A solution of this dilemma would

be to choose the width of the frequency bin fres = 1 Hz so

that both the spectral density and the spectrum have the same

numeric value (but still different units, e.g., V/
√

Hz and V,

respectively). However, if low frequencies approaching 1 Hz

and below are of interest, a frequency bin width of 1 Hz is too

wide.

So far, we have not considered the windowing in the

DFT,4 which means we have so far implicitly considered a

rectangular window function. When applying other window

functions in the DFT, a quantity named “normalized equiva-

lent noise bandwidth” (NENBW) can be defined and Eq. (8)

is extended with f eff
res to

N2
spec ≡N2

PSD · f eff
res =N2

PSD · fres · NENBW (11)

and values of NENBW for different windows are shown in

Table I.3 In order to present the complete information of a

spectral analysis, both the (power) spectral density and the

(power) spectrum have to be presented or one of them and f eff
res .

In the signal processing from the time series of the sig-

nal to the spectral density or spectrum, several proportionality

factors are involved due to the use of, for example, either RMS

amplitude or peak amplitude, either two-sided spectrum or

TABLE I. “Normalized equivalent noise bandwidth” (NENBW) for different

windows.3

Hanning Flat top HP Welch

NENBW 1.5 3.4279 1.2

single-sided spectrum, either natural frequency PSD or angu-

lar frequency PSD, or due to different window types, etc. So

one has to consider all these factors carefully. Complemen-

tarily also an experimental calibration of the spectral density

or spectrum is very desirable and will be considered in the

following.

A tonal signal, e.g., from a signal generator can be used

to calibrate the spectrum or the spectral density. According to

Eq. (9), the RMS signal amplitude of a tonal signal corresponds

directly to the amplitude of the spectrum Nspec, independent of

the width of a frequency bin. For the calibration of the power

spectral density using a tonal signal, the effective width of a

frequency bin enters. According to Eq. (7) (extended to f eff
res ),

the RMS signal amplitude of a tonal signal S2
RMS

has to be

divided by f eff
res in order to obtain the power spectral density.

Alternatively to a calibration with a tonal signal, a signal

of constant power spectral density (white noise) and known

amplitude can be used for the calibration. Such a signal is

provided, for instance, by the Johnson-Nyquist noise (thermal

noise) of a resistor R as voltage source of known RMS voltage

URMS
JN =

√

4 kB T R B (12)

and constant PSD (white noise spectrum). The bandwidth B in

Eq. (12) corresponds to the effective width of a frequency bin

of the DFT as B= f eff
res . In order to obtain a reasonably large volt-

age, a resistor of large resistance should be used (R ≥ 500 kΩ)

and considered in parallel with the input resistance of the

measurement device.

In conclusion, if a case of a spectral analysis includes

tonal peaks, as well as (locally) constant regions as a func-

tion of frequency, both the spectrum and the spectral density

are required in order to deliver quantitative results for tonal

peaks and broad band regions. The tonal peaks are repre-

sented quantitatively in the spectrum (e.g., in volts), while

constant regions are represented quantitatively in the spectral

density (e.g., as V/
√

Hz). The spectrum and spectral density

can be converted into each other by the proportionality factor
√

f eff
res =
√

( fsample/n) · NENBW.
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