%0 Journal Article %A Marcano, D. %A Mauer, G. %A Vaßen, R. %A Weber, A. %T Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD) %J Surface and coatings technology %V 318 %@ 0257-8972 %C Amsterdam [u.a.] %I Elsevier Science %M FZJ-2018-00184 %P 170 - 177 %D 2017 %X In the present work, a metal supported SOFC half-cell was fabricated by means of plasma spray. As support, a Fe-Cr alloy with a porous structure was used. The anode and electrolyte were applied using atmospheric plasma spray (APS) and plasma spray-physical vapor deposition (PS-PVD), respectively. A standard Ni/YSZ (coat mix) powder was used for the anode and the cathode layer consisted of a screen-printed La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) non-sintered paste. The development of a thin, dense, gas-tight 8YSZ electrolyte was the key issue of this work. Analysis of microstructure, phases, and gas-tightness were carried out for various processing conditions. Different parameters were varied, such as: powder feed rate and carrier gas flow rate, robot speed, spraying distance and plasma gas composition. A partially reduced anode coating with 9% porosity and a gas-tight 26 μm electrolyte layer were obtained. Such an assembly was air-tight and delivered a cell with an acceptable open circuit voltage (OCV) and an excellent performance of 1 A/cm2 at 800 °C and 0.7 V. %F PUB:(DE-HGF)16 %9 Journal Article %U <Go to ISI:>//WOS:000402356100020 %R 10.1016/j.surfcoat.2016.10.088 %U https://juser.fz-juelich.de/record/841887