000841887 001__ 841887
000841887 005__ 20240712112814.0
000841887 0247_ $$2doi$$a10.1016/j.surfcoat.2016.10.088
000841887 0247_ $$2ISSN$$a0257-8972
000841887 0247_ $$2ISSN$$a1879-3347
000841887 0247_ $$2WOS$$aWOS:000402356100020
000841887 037__ $$aFZJ-2018-00184
000841887 041__ $$aEnglish
000841887 082__ $$a620
000841887 1001_ $$0P:(DE-Juel1)159408$$aMarcano, D.$$b0$$eCorresponding author
000841887 245__ $$aManufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD)
000841887 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000841887 3367_ $$2DRIVER$$aarticle
000841887 3367_ $$2DataCite$$aOutput Types/Journal article
000841887 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515672035_5532
000841887 3367_ $$2BibTeX$$aARTICLE
000841887 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841887 3367_ $$00$$2EndNote$$aJournal Article
000841887 520__ $$aIn the present work, a metal supported SOFC half-cell was fabricated by means of plasma spray. As support, a Fe-Cr alloy with a porous structure was used. The anode and electrolyte were applied using atmospheric plasma spray (APS) and plasma spray-physical vapor deposition (PS-PVD), respectively. A standard Ni/YSZ (coat mix) powder was used for the anode and the cathode layer consisted of a screen-printed La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) non-sintered paste. The development of a thin, dense, gas-tight 8YSZ electrolyte was the key issue of this work. Analysis of microstructure, phases, and gas-tightness were carried out for various processing conditions. Different parameters were varied, such as: powder feed rate and carrier gas flow rate, robot speed, spraying distance and plasma gas composition. A partially reduced anode coating with 9% porosity and a gas-tight 26 μm electrolyte layer were obtained. Such an assembly was air-tight and delivered a cell with an acceptable open circuit voltage (OCV) and an excellent performance of 1 A/cm2 at 800 °C and 0.7 V.
000841887 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000841887 588__ $$aDataset connected to CrossRef
000841887 7001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b1
000841887 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b2
000841887 7001_ $$0P:(DE-HGF)0$$aWeber, A.$$b3
000841887 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2016.10.088$$gVol. 318, p. 170 - 177$$p170 - 177$$tSurface and coatings technology$$v318$$x0257-8972$$y2017
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.pdf$$yRestricted
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.gif?subformat=icon$$xicon$$yRestricted
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841887 8564_ $$uhttps://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841887 909CO $$ooai:juser.fz-juelich.de:841887$$pVDB
000841887 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159408$$aForschungszentrum Jülich$$b0$$kFZJ
000841887 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b1$$kFZJ
000841887 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000841887 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000841887 9141_ $$y2017
000841887 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841887 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841887 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000841887 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841887 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841887 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841887 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841887 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841887 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841887 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841887 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841887 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841887 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000841887 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000841887 980__ $$ajournal
000841887 980__ $$aVDB
000841887 980__ $$aI:(DE-Juel1)IEK-1-20101013
000841887 980__ $$aI:(DE-Juel1)IEK-9-20110218
000841887 980__ $$aUNRESTRICTED
000841887 981__ $$aI:(DE-Juel1)IET-1-20110218
000841887 981__ $$aI:(DE-Juel1)IMD-2-20101013