001     841887
005     20240712112814.0
024 7 _ |a 10.1016/j.surfcoat.2016.10.088
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000402356100020
|2 WOS
037 _ _ |a FZJ-2018-00184
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Marcano, D.
|0 P:(DE-Juel1)159408
|b 0
|e Corresponding author
245 _ _ |a Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD)
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515672035_5532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the present work, a metal supported SOFC half-cell was fabricated by means of plasma spray. As support, a Fe-Cr alloy with a porous structure was used. The anode and electrolyte were applied using atmospheric plasma spray (APS) and plasma spray-physical vapor deposition (PS-PVD), respectively. A standard Ni/YSZ (coat mix) powder was used for the anode and the cathode layer consisted of a screen-printed La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) non-sintered paste. The development of a thin, dense, gas-tight 8YSZ electrolyte was the key issue of this work. Analysis of microstructure, phases, and gas-tightness were carried out for various processing conditions. Different parameters were varied, such as: powder feed rate and carrier gas flow rate, robot speed, spraying distance and plasma gas composition. A partially reduced anode coating with 9% porosity and a gas-tight 26 μm electrolyte layer were obtained. Such an assembly was air-tight and delivered a cell with an acceptable open circuit voltage (OCV) and an excellent performance of 1 A/cm2 at 800 °C and 0.7 V.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 1
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 2
700 1 _ |a Weber, A.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.surfcoat.2016.10.088
|g Vol. 318, p. 170 - 177
|0 PERI:(DE-600)1502240-7
|p 170 - 177
|t Surface and coatings technology
|v 318
|y 2017
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841887/files/SCT_318_2017_p_170_177.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841887
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21