000841889 001__ 841889
000841889 005__ 20250129092454.0
000841889 0247_ $$2Handle$$a2128/16617
000841889 037__ $$aFZJ-2018-00186
000841889 041__ $$aEnglish
000841889 1001_ $$0P:(DE-Juel1)169828$$aKumar, Shashank$$b0$$eCorresponding author$$ufzj
000841889 1112_ $$aADVANCED SCHOOL ON QUANTUM DETECTORS$$cTrento$$d2018-10-16 - 2018-10-18$$gSQUAD$$wItaly
000841889 245__ $$aDevelopment of a Neutron Detector based on a Monolithic Lithium-glass Scintillator and Digital SiPM arrays
000841889 260__ $$c2017
000841889 3367_ $$033$$2EndNote$$aConference Paper
000841889 3367_ $$2BibTeX$$aINPROCEEDINGS
000841889 3367_ $$2DRIVER$$aconferenceObject
000841889 3367_ $$2ORCID$$aCONFERENCE_POSTER
000841889 3367_ $$2DataCite$$aOutput Types/Conference Poster
000841889 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1516288468_19721$$xAfter Call
000841889 520__ $$aScintillation based neutron detectors are prominent alternatives to 3He based gas detectors traditionally used for detecting cold and thermal neutrons in neutron scattering experiments [1]. In the recent years, photomultiplier tubes (PMTs) have been used as a technology of choice for this kind of applications due to their single photon counting abilities and relatively fast responses in the nanosecond range. However, the high voltage requirements (of some kV), the inability to operate in presence of magnetic fields, and the electromechanical complexity normally accompanying these developments have all limited their use. Silicon based solid-state detectors capable of single-photon counting at even shorter response times, as it is the case of silicon photomultipliers (SiPM) or SPAD arrays, additionally offering better neutron counting rates, relatively lower costs, and the possibility of modular design have the potential of becoming the photodetection technology of choice in these experiments. Recent investigations [2, 3], have motivated us to follow the approach of using SiPMs for visible light detection in neutron scintillation detectors and develop a detector prototype yielding an active area of 13×13 cm², based on a digital SiPM (Philips Digital Photon Counting, PDPC) technology. Our goal is to eventually reach a two dimensional spatial resolution of 1×1 mm2, and a neutron counting rate of above 20 Mcps/m². The final detector is aimed to be used in the future at the TREFF instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
000841889 536__ $$0G:(DE-HGF)POF3-632$$a632 - Detector technology and systems (POF3-632)$$cPOF3-632$$fPOF III$$x0
000841889 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000841889 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000841889 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000841889 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000841889 7001_ $$0P:(DE-Juel1)161528$$aDurini, Daniel$$b1$$ufzj
000841889 7001_ $$0P:(DE-Juel1)156322$$aHerzkamp, Matthias$$b2$$ufzj
000841889 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b3$$ufzj
000841889 8564_ $$uhttp://webmagazine.unitn.it/en/evento/dii/21181/squad-2017-advanced-school-on-quantum-detectors
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.pdf$$yOpenAccess
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.gif?subformat=icon$$xicon$$yOpenAccess
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841889 8564_ $$uhttps://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841889 909CO $$ooai:juser.fz-juelich.de:841889$$pdriver$$pVDB$$popen_access$$popenaire
000841889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169828$$aForschungszentrum Jülich$$b0$$kFZJ
000841889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161528$$aForschungszentrum Jülich$$b1$$kFZJ
000841889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156322$$aForschungszentrum Jülich$$b2$$kFZJ
000841889 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b3$$kFZJ
000841889 9131_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x0
000841889 9141_ $$y2017
000841889 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841889 920__ $$lyes
000841889 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000841889 9801_ $$aFullTexts
000841889 980__ $$aposter
000841889 980__ $$aVDB
000841889 980__ $$aUNRESTRICTED
000841889 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000841889 981__ $$aI:(DE-Juel1)PGI-4-20110106