001     841889
005     20250129092454.0
024 7 _ |a 2128/16617
|2 Handle
037 _ _ |a FZJ-2018-00186
041 _ _ |a English
100 1 _ |a Kumar, Shashank
|0 P:(DE-Juel1)169828
|b 0
|e Corresponding author
|u fzj
111 2 _ |a ADVANCED SCHOOL ON QUANTUM DETECTORS
|g SQUAD
|c Trento
|d 2018-10-16 - 2018-10-18
|w Italy
245 _ _ |a Development of a Neutron Detector based on a Monolithic Lithium-glass Scintillator and Digital SiPM arrays
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1516288468_19721
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Scintillation based neutron detectors are prominent alternatives to 3He based gas detectors traditionally used for detecting cold and thermal neutrons in neutron scattering experiments [1]. In the recent years, photomultiplier tubes (PMTs) have been used as a technology of choice for this kind of applications due to their single photon counting abilities and relatively fast responses in the nanosecond range. However, the high voltage requirements (of some kV), the inability to operate in presence of magnetic fields, and the electromechanical complexity normally accompanying these developments have all limited their use. Silicon based solid-state detectors capable of single-photon counting at even shorter response times, as it is the case of silicon photomultipliers (SiPM) or SPAD arrays, additionally offering better neutron counting rates, relatively lower costs, and the possibility of modular design have the potential of becoming the photodetection technology of choice in these experiments. Recent investigations [2, 3], have motivated us to follow the approach of using SiPMs for visible light detection in neutron scintillation detectors and develop a detector prototype yielding an active area of 13×13 cm², based on a digital SiPM (Philips Digital Photon Counting, PDPC) technology. Our goal is to eventually reach a two dimensional spatial resolution of 1×1 mm2, and a neutron counting rate of above 20 Mcps/m². The final detector is aimed to be used in the future at the TREFF instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
536 _ _ |a 632 - Detector technology and systems (POF3-632)
|0 G:(DE-HGF)POF3-632
|c POF3-632
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Durini, Daniel
|0 P:(DE-Juel1)161528
|b 1
|u fzj
700 1 _ |a Herzkamp, Matthias
|0 P:(DE-Juel1)156322
|b 2
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 3
|u fzj
856 4 _ |u http://webmagazine.unitn.it/en/evento/dii/21181/squad-2017-advanced-school-on-quantum-detectors
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841889/files/Shashank%20Kumar_SQUAD-2017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:841889
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21