000841897 001__ 841897
000841897 005__ 20240712100823.0
000841897 0247_ $$2doi$$a10.5194/amt-10-4601-2017
000841897 0247_ $$2ISSN$$a1867-1381
000841897 0247_ $$2ISSN$$a1867-8548
000841897 0247_ $$2Handle$$a2128/16416
000841897 0247_ $$2WOS$$aWOS:000416551700002
000841897 037__ $$aFZJ-2018-00194
000841897 041__ $$aEnglish
000841897 082__ $$a550
000841897 1001_ $$0P:(DE-Juel1)167408$$aSong, Rui$$b0$$eCorresponding author$$ufzj
000841897 245__ $$aTomographic reconstruction of atmospheric gravity wave parameters from airglow observations
000841897 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2017
000841897 3367_ $$2DRIVER$$aarticle
000841897 3367_ $$2DataCite$$aOutput Types/Journal article
000841897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515492112_19495
000841897 3367_ $$2BibTeX$$aARTICLE
000841897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841897 3367_ $$00$$2EndNote$$aJournal Article
000841897 520__ $$aGravity waves (GWs) play an important role in the dynamics of the mesosphere and lower thermosphere (MLT). Therefore, global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so-called "target mode", i.e. to point at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic 2-D reconstruction of the atmospheric state, in particular of GW structures. The feasibility of this tomographic retrieval approach is assessed using simulated measurements. It shows that one major advantage of this observation strategy is that GWs can be observed on a much smaller scale than conventional observations. We derive a GW sensitivity function, and it is shown that "target mode" observations are able to capture GWs with horizontal wavelengths as short as ∼ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained from conventional limb sounding.
000841897 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000841897 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000841897 588__ $$aDataset connected to CrossRef
000841897 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b1$$ufzj
000841897 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b2
000841897 7001_ $$0P:(DE-HGF)0$$aLiu, Guang$$b3
000841897 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4$$ufzj
000841897 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b5$$ufzj
000841897 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-10-4601-2017$$gVol. 10, no. 12, p. 4601 - 4612$$n12$$p4601 - 4612$$tAtmospheric measurement techniques$$v10$$x1867-8548$$y2017
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.pdf
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.pdf$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.gif?subformat=icon$$xicon$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon$$xicon
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440$$xicon-1440
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180$$xicon-180
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640$$xicon-640
000841897 8564_ $$uhttps://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa$$xpdfa
000841897 8767_ $$8Helmholtz-PUC-2018-6$$92018-01-03$$d2018-01-08$$eAPC$$jZahlung erfolgt$$pamt-2017-118
000841897 909CO $$ooai:juser.fz-juelich.de:841897$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000841897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167408$$aForschungszentrum Jülich$$b0$$kFZJ
000841897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b1$$kFZJ
000841897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b2$$kFZJ
000841897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b4$$kFZJ
000841897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b5$$kFZJ
000841897 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000841897 9141_ $$y2017
000841897 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000841897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841897 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841897 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2015
000841897 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841897 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841897 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841897 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841897 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841897 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841897 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000841897 9801_ $$aAPC
000841897 9801_ $$aFullTexts
000841897 980__ $$ajournal
000841897 980__ $$aVDB
000841897 980__ $$aUNRESTRICTED
000841897 980__ $$aI:(DE-Juel1)IEK-7-20101013
000841897 980__ $$aAPC
000841897 981__ $$aI:(DE-Juel1)ICE-4-20101013