Hauptseite > Workflowsammlungen > Publikationsgebühren > Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations > print |
001 | 841897 | ||
005 | 20240712100823.0 | ||
024 | 7 | _ | |a 10.5194/amt-10-4601-2017 |2 doi |
024 | 7 | _ | |a 1867-1381 |2 ISSN |
024 | 7 | _ | |a 1867-8548 |2 ISSN |
024 | 7 | _ | |a 2128/16416 |2 Handle |
024 | 7 | _ | |a WOS:000416551700002 |2 WOS |
037 | _ | _ | |a FZJ-2018-00194 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Song, Rui |0 P:(DE-Juel1)167408 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations |
260 | _ | _ | |a Katlenburg-Lindau |c 2017 |b Copernicus |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1515492112_19495 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Gravity waves (GWs) play an important role in the dynamics of the mesosphere and lower thermosphere (MLT). Therefore, global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so-called "target mode", i.e. to point at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic 2-D reconstruction of the atmospheric state, in particular of GW structures. The feasibility of this tomographic retrieval approach is assessed using simulated measurements. It shows that one major advantage of this observation strategy is that GWs can be observed on a much smaller scale than conventional observations. We derive a GW sensitivity function, and it is shown that "target mode" observations are able to capture GWs with horizontal wavelengths as short as ∼ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100–200 km obtained from conventional limb sounding. |
536 | _ | _ | |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) |0 G:(DE-HGF)POF3-244 |c POF3-244 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kaufmann, Martin |0 P:(DE-Juel1)129128 |b 1 |u fzj |
700 | 1 | _ | |a Ern, Manfred |0 P:(DE-Juel1)129117 |b 2 |
700 | 1 | _ | |a Liu, Guang |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Riese, Martin |0 P:(DE-Juel1)129145 |b 4 |u fzj |
700 | 1 | _ | |a Ungermann, Jörn |0 P:(DE-Juel1)129105 |b 5 |u fzj |
773 | _ | _ | |a 10.5194/amt-10-4601-2017 |g Vol. 10, no. 12, p. 4601 - 4612 |0 PERI:(DE-600)2505596-3 |n 12 |p 4601 - 4612 |t Atmospheric measurement techniques |v 10 |y 2017 |x 1867-8548 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/841897/files/amt-10-4601-2017.pdf?subformat=pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon |x icon |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440 |x icon-1440 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180 |x icon-180 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640 |x icon-640 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841897/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:841897 |p openaire |p open_access |p OpenAPC |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167408 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129128 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129117 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129145 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129105 |
913 | 1 | _ | |a DE-HGF |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-244 |2 G:(DE-HGF)POF3-200 |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ATMOS MEAS TECH : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|